日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

(Ⅱ)求直線和的斜率之積的值.并證明必存在兩個定點使得恒為定值, 查看更多

 

題目列表(包括答案和解析)

已知,若過定點、以(λ∈R)為法向量的直線l1與過點為法向量的直線l2相交于動點P.
(1)求直線l1和l2的方程;
(2)求直線l1和l2的斜率之積k1k2的值,并證明必存在兩個定點E,F,使得恒為定值;
(3)在(2)的條件下,若M,N是上的兩個動點,且,試問當|MN|取最小值時,向量是否平行,并說明理由.

查看答案和解析>>

已知點E、F的坐標分別是(-2,0)、(2,0),直線EP、FP相交于點P,且它們的斜率之積為-
1
4

(1)求證:點P的軌跡在一個橢圓C上,并寫出橢圓C的方程;
(2)設過原點O的直線AB交(1)中的橢圓C于點A、B,定點M的坐標為(1,
1
2
)
,試求△MAB面積的最大值,并求此時直線AB的斜率kAB
(3)反思(2)題的解答,當△MAB的面積取得最大值時,探索(2)題的結論中直線AB的斜率kAB和OM所在直線的斜率kOM之間的關系.由此推廣到點M位置的一般情況或橢圓的一般情況(使第(2)題的結論成為推廣后的一個特例),試提出一個猜想或設計一個問題,嘗試研究解決.
[說明:本小題將根據你所提出的猜想或問題的質量分層評分].

查看答案和解析>>

已知點E、F的坐標分別是(-2,0)、(2,0),直線EP、FP相交于點P,且它們的斜率之積為
(1)求證:點P的軌跡在一個橢圓C上,并寫出橢圓C的方程;
(2)設過原點O的直線AB交(1)中的橢圓C于點A、B,定點M的坐標為,試求△MAB面積的最大值,并求此時直線AB的斜率kAB
(3)反思(2)題的解答,當△MAB的面積取得最大值時,探索(2)題的結論中直線AB的斜率kAB和OM所在直線的斜率kOM之間的關系.由此推廣到點M位置的一般情況或橢圓的一般情況(使第(2)題的結論成為推廣后的一個特例),試提出一個猜想或設計一個問題,嘗試研究解決.
[說明:本小題將根據你所提出的猜想或問題的質量分層評分].

查看答案和解析>>

F1F2分別為橢圓C:=1(ab>0)的左、右兩個焦點.

(1)若橢圓C上的點A(1,)到F1F2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標;

(2)設點K是(1)中所得橢圓上的動點,求線段F1K的中點的軌跡方程;

(3)已知橢圓具有性質:若M、N是橢圓C上關于原點對稱的兩個點,點P是橢圓上任意一點,當直線PM、PN的斜率都存在,并記為kPMkPN時,那么kPM與kPN之積是與點P位置無關的定值,試寫出雙曲線=1具有類似特性的性質并加以證明.

查看答案和解析>>

設F1、F2分別為橢圓C:=1(a>b>0)的左、右兩個焦點.

(1)若橢圓C上的點A(1,)到F1、F2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標;

(2)設點K是(1)中所得橢圓上的動點,求線段F1K的中點的軌跡方程;

(3)已知橢圓具有性質:若M、N是橢圓C上關于原點對稱的兩個點,點P是橢圓上任意一點,當直線PM、PN的斜率都存在,并記為kPM、kPN時,那么kPM與kPN之積是與點P位置無關的定值,試寫出雙曲線=1具有類似特性的性質并加以證明.

查看答案和解析>>

一、選擇題:

CADDB  ADBBA  CD

二、填空題

(13);  (14)8;   (15);  (16).

三、解答題

(17)解:將圓C的方程配方得標準方程為

則此圓的圓心為(0 , 4),半徑為2.

(Ⅰ) 若直線與圓C相切,則有. 解得.  ………………6分

(Ⅱ) 解:過圓心C作CD⊥AB,則根據題意和圓的性質,得

 解得.

∴直線的方程是.  ………………12分

(18)解:(Ⅰ)由題意知此平面區域表示的是以構成的三角形及其內部,且△是直角三角形, 所以覆蓋它的且面積最小的圓是其外接圓,故圓心是(2,1),半徑是,

所以圓的方程是.    ………………6分

 (Ⅱ)設直線的方程是:.

  因為,所以圓心到直線的距離是, 即.

解得:.                          ………………………………11分

所以直線的方程是. ………………12分

(19)解:設過點T(3,0)的直線交拋物線于點A、B .

(Ⅰ)當直線的鈄率不存在時,直線的方程為,

此時, 直線與拋物線相交于點A(3,)().B(3,-),∴=3.   …….............4分

(Ⅱ)當直線的鈄率存在時,設直線的方程為

其中,由.     …………………….….6分

又 ∵ , ∴

                                                    ………………………………….10分

綜上所述,命題“若直線過點T(3,0),則=3” 是真命題.  ………………….12分

(20)解:(Ⅰ)由的中點,

設A、B兩點的坐標分別為

.

點的坐標為.               …………………………4分

  又點在直線上,  .

,       ………………6分

   (Ⅱ)由(Ⅰ)知,不妨設橢圓的一個焦點坐標為

關于直線上的對稱點為

則有.         ………………10分

由已知.

,∴所求的橢圓的方程為 .     ………………12分

(21)解:(Ⅰ)

     ,即

     ,即.

      .             ……………………………………………4分

   (Ⅱ)設直線的方程為

      直線與雙曲線交于,不妨設

      直線與雙曲線交于.

     由.

     令,此式恒成立.

.      ………………6分

       而=.

∴直線與雙曲線交于兩支上的兩點;

同理直線與雙曲線交于兩支上的兩點, 

       則                  ……………………8分

        =

       = .  ……………………10分

       令  則   在(1,2)遞增.

       又,  

.             ………………………………………12分

(22)解:(Ⅰ)直線的法向量的方程:

即為. ………………………2分

直線的法向量的方程為

即為.     ………………………4分

(Ⅱ).   ………………………6分

設點的坐標為,由,得.…………8分

由橢圓的定義的知,存在兩個定點使得恒為定值4,此時兩個定點為橢圓的兩個焦點. ………………………10分

(Ⅲ)設,則

,得. ………………………12分

當且僅當時,取最小值.

,故平行.

………………………14分

 

 


同步練習冊答案
主站蜘蛛池模板: 国产蜜臀97一区二区三区 | 大黄网站在线观看 | 亚洲在线观看免费视频 | 中文字幕 在线观看 | 欧美日韩国产综合在线 | 狠狠草视频 | 91精品国产乱码久久久久久久久 | 欧美韩一区二区 | 国产精品一区二区免费 | 亚洲午夜精品一区二区三区 | 午夜激情电影在线 | 欧美日韩三级 | 欧美激情国产日韩精品一区18 | www在线视频| 欧美一级免费大片 | 亚洲精品久久久一区二区三区 | 黄色片视频在线观看 | 国产精品一区二区不卡视频 | 久久影院一区 | 成人激情视频在线播放 | 欧美自拍视频一区 | 亚洲热在线视频 | 国产不卡一区二区三区在线观看 | 欧美日韩精品免费 | 蜜桃久久av | 日本超碰 | 久久精品成人免费视频 | 日本久久久久 | 国产一区二区三区精品久久久 | 日韩一区中文 | 午夜精品福利一区二区三区蜜桃 | 男女瑟瑟网站 | 亚洲欧洲一区二区 | 99精品欧美一区二区三区综合在线 | 欧美一区在线视频 | 国产美女高潮一区二区三区 | 波多野结衣一区三区 | 精品久久久久久久久久 | 色狠狠干 | 久久精品这里热有精品 | 成人教育av |