題目列表(包括答案和解析)
解::因為,所以f(1)f(2)<0,因此f(x)在區間(1,2)上存在零點,又因為y=
與y=-
在(0,+
)上都是增函數,因此
在(0,+
)上是增函數,所以零點個數只有一個方法2:把函數
的零點個數個數問題轉化為判斷方程
解的個數問題,近而轉化成判斷
與
交點個數問題,在坐標系中畫出圖形
由圖看出顯然一個交點,因此函數的零點個數只有一個
袋中有50個大小相同的號牌,其中標著0號的有5個,標著n號的有n個(n=1,2,…9),現從袋中任取一球,求所取號碼的分布列,以及取得號碼為偶數的概率.
已知m>1,直線,橢圓C:
,
、
分別為橢圓C的左、右焦點.
(Ⅰ)當直線過右焦點時,求直線的方程;
(Ⅱ)設直線與橢圓C交于A、B兩點,△A、△B
的重心分別為G、H.若原點O在以線段GH為直徑的圓內,求實數m的取值范圍.[
【解析】第一問中因為直線經過點
(
,0),所以
=
,得
.又因為m>1,所以
,故直線的方程為
第二問中設,由
,消去x,得
,
則由,知
<8,且有
由題意知O為的中點.由
可知
從而
,設M是GH的中點,則M(
).
由題意可知,2|MO|<|GH|,得到范圍
(本小題滿分14分)
有一隧道既是交通擁擠地段,又是事故多發地段.為了保證安全,交通部門規定,隧道內的車距正比于車速
的平方與車身長
的積,且車距不得小于一個車身長
(假設所有車身長均為
).而當車速為
時,車距為1.44個車身長.
⑴求通過隧道的最低車速;
⑵在交通繁忙時,應規定怎樣的車速,可以使隧道在單位時段內通過的汽車數量最多?
剎車時的車速(km/h) | 0 | 10 | 20 | 30 | 40 | 50 | 60 |
剎車距離(m) | 0 | 0.3 | 1.0 | 2.1 | 3.6 | 5.5 | 7.8 |
從以下兩個小題中選做一題(只能做其中一個,做兩個按得分最低的記分).(甲)一水池有2個進水口,1個出水口,每口進出水速度如圖甲、乙所示.某天0點到6點,該水池的蓄水量如圖丙所示.(至少打開一個水口)
給出以下3個論斷:①0點到3點只進水不出水;②3點到4點不進水只出水;③4點到6點不進水不出水.則一定能確定正確的論斷序號是________.
(乙)深圳市的一種特色水果上市時間僅能持續5個月,預測上市初期和后期會因供不應求使價格呈連續上漲態勢,而中期又將出現供大于求使價格連續下跌,現有三種價格模擬函數.①f(x)p·qx;②f(x)=px2+qx+1;③f(x)=x(x-q)2+p
(以上三式中p,q均為常數,且q>1,x=0表示4月1日,x=1表示5月1日,依次類推).
(1)為準確研究其價格走勢,應選________種價格模擬函數.
(2)若f(x)=4,f(2)=6,預測該果品在________月份內價格下跌.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com