日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

將①代入上式得.即點在直線上.所以三點共線 查看更多

 

題目列表(包括答案和解析)

已知向量),向量

.

(Ⅰ)求向量; (Ⅱ)若,求.

【解析】本試題主要考查了向量的數量積的運算,以及兩角和差的三角函數關系式的運用。

(1)問中∵,∴,…………………1分

,得到三角關系是,結合,解得。

(2)由,解得,結合二倍角公式,和,代入到兩角和的三角函數關系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②聯立方程解得,5分

     ……………6分

(Ⅱ)∵,  …………7分

               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

將①代入②中,可得   ③    …………………4分

將③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,從而.      …………………8分

由(Ⅰ)知;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

綜上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知 .                …………9分

             ……………10分

,且注意到

,又,∴   ………………………11分

綜上可得                    …………………12分

(若用,又∵ ∴

 

查看答案和解析>>

已知函數的圖象過坐標原點O,且在點處的切線的斜率是.

(Ⅰ)求實數的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對任意給定的正實數,曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

【解析】第一問當時,,則

依題意得:,即    解得

第二問當時,,令,結合導數和函數之間的關系得到單調性的判定,得到極值和最值

第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

不妨設,則,顯然

是以O為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

若方程(*)無解,不存在滿足題設要求的兩點P、Q.

(Ⅰ)當時,,則

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當時,,令

變化時,的變化情況如下表:

0

0

+

0

單調遞減

極小值

單調遞增

極大值

單調遞減

。∴上的最大值為2.

②當時, .當時, ,最大值為0;

時, 上單調遞增。∴最大值為

綜上,當時,即時,在區(qū)間上的最大值為2;

時,即時,在區(qū)間上的最大值為

(Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

不妨設,則,顯然

是以O為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

若方程(*)無解,不存在滿足題設要求的兩點P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時

代入(*)式得:    即   (**)

 ,則

上單調遞增,  ∵     ∴,∴的取值范圍是

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實數,曲線上存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上

 

查看答案和解析>>

設橢圓的左、右頂點分別為,點在橢圓上且異于兩點,為坐標原點.

(Ⅰ)若直線的斜率之積為,求橢圓的離心率;

(Ⅱ)若,證明直線的斜率 滿足

【解析】(1)解:設點P的坐標為.由題意,有  ①

,得

,可得,代入①并整理得

由于,故.于是,所以橢圓的離心率

(2)證明:(方法一)

依題意,直線OP的方程為,設點P的坐標為.

由條件得消去并整理得  ②

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依題意,直線OP的方程為,設點P的坐標為.

由P在橢圓上,有

因為,所以,即   ③

,得整理得.

于是,代入③,

整理得

解得

所以.

 

查看答案和解析>>

等軸雙曲線的中心在原點,焦點在軸上,與拋物線的準線交于兩點,;則的實軸長為(      )

                                        

【解析】設等軸雙曲線方程為,拋物線的準線為,由,則,把坐標代入雙曲線方程得,所以雙曲線方程為,即,所以,所以實軸長,選C.

 

查看答案和解析>>

從方程中消去t,此過程如下:
由x=2t得,將代入y=t-3中,得到
仿照上述方法,將方程中的α消去,并說明它表示什么圖形,求出其焦點.

查看答案和解析>>


同步練習冊答案
主站蜘蛛池模板: 久久久夜夜夜 | 国产精品一区二区精品 | 激情国产| 国产精品一二三区 | 91人人干| 国产视频91在线 | 欧美一级三级 | 国产精品多久久久久久情趣酒店 | 日本中文字幕第一页 | 色婷婷av一区二区三区软件 | 欧美国产一区二区 | 国产视频一区二区 | 人人草人人 | 日韩欧美一区二区三区视频 | 欧美激情精品久久久久久 | 亚洲人在线播放 | 亚洲精品久久久久久一区二区 | 成人在线观看中文字幕 | 成人欧美一区二区三区在线观看 | 嫩呦国产一区二区三区av | www.黄网| 午夜精品久久久久久久星辰影院 | 色婷婷一区二区三区 | 无码一区二区三区视频 | 欧美人体一区二区三区 | 精品欧美一区二区三区久久久 | 极品少妇一区二区三区精品视频 | 亚洲黄色免费观看 | 日韩精品无码一区二区三区 | 国产精品7| 人人爽在线 | 国产成人精品无人区一区 | 精品成人国产 | 91在线影院 | 国产一区二区三区在线免费观看 | 91偷拍精品一区二区三区 | 日韩视频在线免费观看 | 国产欧美精品一区二区三区 | 国产精品1区2区 | 久久精彩视频 | 国产一区二区三区高清 |