題目列表(包括答案和解析)
如圖,在正方體中,
是棱
的中點,
在棱
上.
且,若二面角
的余弦值為
,求實數
的值.
【解析】以A點為坐標原點,AB為x軸,AD為y軸,AA1為z軸,建立空間直角坐標系,設正方體的棱長為4,分別求出平面C1PQ法向量和面C1PQ的一個法向量,然后求出兩法向量的夾角,建立等量關系,即可求出參數λ的值.
在四棱錐中,
平面
,底面
為矩形,
.
(Ⅰ)當時,求證:
;
(Ⅱ)若邊上有且只有一個點
,使得
,求此時二面角
的余弦值.
【解析】第一位女利用線面垂直的判定定理和性質定理得到。當a=1時,底面ABCD為正方形,
又因為,
………………2分
又,得證。
第二問,建立空間直角坐標系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
設BQ=m,則Q(1,m,0)(0《m《a》
要使,只要
所以,即
………6分
由此可知時,存在點Q使得
當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得
由此知道a=2, 設平面POQ的法向量為
,所以
平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
解:(Ⅰ)當時,底面ABCD為正方形,
又因為,
又
………………3分
(Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標系,如圖所示,
則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
設BQ=m,則Q(1,m,0)(0《m《a》要使,只要
所以,即
………6分
由此可知時,存在點Q使得
當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,
設平面POQ的法向量為
,所以
平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
已知四棱錐的底面為直角梯形,
,
底面
,且
,
,
是
的中點。
(1)證明:面面
;
(2)求與
所成的角;
(3)求面與面
所成二面角的余弦值.
【解析】(1)利用面面垂直的性質,證明CD⊥平面PAD.
(2)建立空間直角坐標系,寫出向量與
的坐標,然后由向量的夾角公式求得余弦值,從而得所成角的大小.
(3)分別求出平面的法向量和面
的一個法向量,然后求出兩法向量的夾角即可.
已知四棱錐P-ABCD的底面ABCD是邊長為2的正方形,PD⊥底面ABCD,E,F分別為棱BC、AD的中點.
(1)求證:DE∥平面PFB;
(2)已知二面角P-BF-C的余弦值為,求四棱錐P-ABCD的體積.
【解析】(1)證:DE//BF即可;
(2)可以利用向量法根據二面角P-BF-C的余弦值為,確定高PD的值,即可求出四棱錐的體積.也可利用傳統方法直接作出二面角的平面角,求高PD的值也可.在找平面角時,要考慮運用三垂線或逆定理.
在△ABC中,內角A,B,C的對邊分別為a,b,c.已知
(1)求的值;
(2)若求△ABC的面積S.
【解析】第一問中,利用
得到結論第二問中,因為即c=2a,然后利用余弦定理
結合面積公式得到。
(1) 解:因為
即
(2)因為即c=2a,然后利用余弦定理
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com