題目列表(包括答案和解析)
已知數列是首項為
的等比數列,且滿足
.
(1) 求常數的值和數列
的通項公式;
(2) 若抽去數列中的第一項、第四項、第七項、……、第
項、……,余下的項按原來的順序組成一個新的數列
,試寫出數列
的通項公式;
(3) 在(2)的條件下,設數列的前
項和為
.是否存在正整數
,使得
?若存在,試求所有滿足條件的正整數
的值;若不存在,請說明理由.
【解析】第一問中解:由得
,,
又因為存在常數p使得數列為等比數列,
則即
,所以p=1
故數列為首項是2,公比為2的等比數列,即
.
此時也滿足,則所求常數
的值為1且
第二問中,解:由等比數列的性質得:
(i)當時,
;
(ii) 當時,
,
所以
第三問假設存在正整數n滿足條件,則,
則(i)當時,
,
已知是公差為d的等差數列,
是公比為q的等比數列
(Ⅰ)若 ,是否存在
,有
?請說明理由;
(Ⅱ)若(a、q為常數,且aq
0)對任意m存在k,有
,試求a、q滿足的充要條件;
(Ⅲ)若試確定所有的p,使數列
中存在某個連續p項的和式數列中
的一項,請證明.
【解析】第一問中,由得
,整理后,可得
、
,
為整數
不存在
、
,使等式成立。
(2)中當時,則
即
,其中
是大于等于
的整數
反之當時,其中
是大于等于
的整數,則
,
顯然,其中
、
滿足的充要條件是
,其中
是大于等于
的整數
(3)中設當
為偶數時,
式左邊為偶數,右邊為奇數,
當為偶數時,
式不成立。由
式得
,整理
當時,符合題意。當
,
為奇數時,
結合二項式定理得到結論。
解(1)由得
,整理后,可得
、
,
為整數
不存在
、
,使等式成立。
(2)當時,則
即
,其中
是大于等于
的整數反之當
時,其中
是大于等于
的整數,則
,
顯然,其中
、
滿足的充要條件是
,其中
是大于等于
的整數
(3)設當
為偶數時,
式左邊為偶數,右邊為奇數,
當為偶數時,
式不成立。由
式得
,整理
當時,符合題意。當
,
為奇數時,
由
,得
當
為奇數時,此時,一定有
和
使上式一定成立。
當
為奇數時,命題都成立
已知函數f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實數x只有一個.
(1)求函數f(x)的表達式;
(2)若數列{an}滿足a1=,an+1=f(an),bn=
-1,n∈N*,證明數列{bn}是等比數列,并求出{bn}的通項公式;
(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=.…………………………………………4分
(2)an+1=f(an)=(n∈N*),bn=
-1, ∴
=
=
=
,
∴{bn}為等比數列,q=.又∵a1=
,∴b1=
-1=
,
bn=b1qn-1=n-1=
n(n∈N*).……………………………9分
(3)證明:∵anbn=an=1-an=1-
=
,
∴a1b1+a2b2+…+anbn=+
+…+
<
+
+…+
==1-
<1(n∈N*).
已知遞增等差數列滿足:
,且
成等比數列.
(1)求數列的通項公式
;
(2)若不等式對任意
恒成立,試猜想出實數
的最小值,并證明.
【解析】本試題主要考查了數列的通項公式的運用以及數列求和的運用。第一問中,利用設數列公差為
,
由題意可知,即
,解得d,得到通項公式,第二問中,不等式等價于
,利用當
時,
;當
時,
;而
,所以猜想,
的最小值為
然后加以證明即可。
解:(1)設數列公差為
,由題意可知
,即
,
解得或
(舍去). …………3分
所以,. …………6分
(2)不等式等價于,
當時,
;當
時,
;
而,所以猜想,
的最小值為
. …………8分
下證不等式對任意
恒成立.
方法一:數學歸納法.
當時,
,成立.
假設當時,不等式
成立,
當時,
,
…………10分
只要證 ,只要證
,
只要證 ,只要證
,
只要證 ,顯然成立.所以,對任意
,不等式
恒成立.…14分
方法二:單調性證明.
要證
只要證 ,
設數列的通項公式
, …………10分
, …………12分
所以對,都有
,可知數列
為單調遞減數列.
而,所以
恒成立,
故的最小值為
.
已知是等差數列,其前n項和為Sn,
是等比數列,且
,
.
(Ⅰ)求數列與
的通項公式;
(Ⅱ)記,
,證明
(
).
【解析】(1)設等差數列的公差為d,等比數列
的公比為q.
由,得
,
,
.
由條件,得方程組,解得
所以,
,
.
(2)證明:(方法一)
由(1)得
①
②
由②-①得
而
故,
(方法二:數學歸納法)
① 當n=1時,,
,故等式成立.
② 假設當n=k時等式成立,即,則當n=k+1時,有:
即,因此n=k+1時等式也成立
由①和②,可知對任意,
成立.
1.D
2.C 提示:畫出滿足條件A∪B=A∪C的文氏圖,可知有五種情況,以觀察其中一種,如圖,顯然只要圖中陰影部分相等,B、C未必要相等,條件A∪B=A∪C仍可滿足,對照四個選擇支,A、B、D均可排除,故選C.
3.D
4.B 提示:由題意知,M,
N,因此,
(
),又A∩B=
,故集合A、B的子集中沒有相同的集合,可知M、N中沒有其他的公共元素,故正確的答案是M∩N=
.
5.A 提示:由得
,當
時,△
,
得,當
時,△
,且
,即
所以
6.A 7.D 8.A
9.D提示:設3x2-4x-32<0的一個必要不充分條件是為Q,P=.由題意知:P能推出Q,但Q不能推出P.也可理解為:P
Q.
10.A 11.B
12.D 提示:由,又因為
是
的充分而不必要條件,所以
,即
。可知A=
或方程
的兩根要在區間[1,2]內,也即以下兩種情況:
(1);
(2)
;綜合(1)、(2)可得
。
二、填空題
13.3 14.
w.w.w.k.s.5.u.c.o.m
15. -2≤x≤6 提示:由[x]2-3[x]-10≤0得-2≤[x] ≤5,則-2≤x≤6. 16. ①④
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com