題目列表(包括答案和解析)
C.選修4-4:坐標系與參數方程
在極坐標系下,已知圓O:和直線
,
(1)求圓O和直線的直角坐標方程;(2)當
時,求直線
與圓O公共點的一個極坐標.
D.選修4-5:不等式證明選講
對于任意實數和
,不等式
恒成立,試求實數
的取值范圍.
C
[解析] 由基本不等式,得ab≤=
=
-ab,所以ab≤
,故B錯;
+
=
=
≥4,故A錯;由基本不等式得
≤
=
,即
+
≤
,故C正確;a2+b2=(a+b)2-2ab=1-2ab≥1-2×
=
,故D錯.故選C.
.定義域為R的函數滿足
,且當
時,
,則當
時,
的最小值為( )
(A) (B)
(C)
(D)
.過點作圓
的弦,其中弦長為整數的共有 ( )
A.16條 B. 17條 C. 32條 D. 34條
一、
二、
9.16 10.2009 11.
12.
13. 14.3
15.②③
三、
16.解:(1)由余弦定理得:
是以角C為直角的直角三角形.……………………6分
(2)中
………………①
………………②
②÷①得,
則……………………12分
17.解:(1)因為……………………………………(2分)
……………………………………………………(4分)
所以線路信息通暢的概率為。………………………(6分)
(2)的所有可能取值為4,5,6,7,8。
……………………………………………………………(9分)
∴的分布列為
4
5
6
7
8
P
…………………………………………………………………………………………(10分)
∴E=4×
+5×
+6×
+7×
+8×
=6。……………………(12分)
18.解:解法一:(1)證明:連結OC,
∵ABD為等邊三角形,O為BD的中點,∴AO
垂直BD。………………………………………………………………(1分)
∴ AO=CO=。………………………………………………………………………(2分)
在AOC中,AC=
,∴AO2+CO2=AC2,
∴∠AOC=900,即AO⊥OC。
∴BDOC=O,∴AO⊥平面BCD。…………………………………………………(3分)
(2)過O作OE垂直BC于E,連結AE,
∵AO⊥平面BCD,∴AE在平面BCD上的射影為OE。
∴AE⊥BC。
∠AEO為二面角A―BC―D的平面角。………………………………………(7分)
在RtAEO中,AO=
,OE=
,
∠
,
∴∠AEO=arctan2。
二面角A―BC―D的大小為arctan2。
(3)設點O到面ACD的距離為∵VO-ACD=VA-OCD,
∴。
在ACD中,AD=CD=2,AC=
,
。
|