題目列表(包括答案和解析)
三棱柱中,側棱與底面垂直,
,
,
分別是
,
的中點.
(Ⅰ)求證:平面
;
(Ⅱ)求證:平面
;
(Ⅲ)求三棱錐的體積.
【解析】第一問利連結,
,∵M,N是AB,
的中點∴MN//
.
又∵平面
,∴MN//平面
.
----------4分
⑵中年∵三棱柱ABC-A1B1C1中,側棱與底面垂直,∴四邊形是正方形.∴
.∴
.連結
,
.
∴,又N中
的中點,∴
.
∵與
相交于點C,∴MN
平面
. --------------9分
⑶中由⑵知MN是三棱錐M-的高.在直角
中,
,
∴MN=.又
.
.得到結論。
⑴連結,
,∵M,N是AB,
的中點∴MN//
.
又∵平面
,∴MN//平面
.
--------4分
⑵∵三棱柱ABC-A1B1C1中,側棱與底面垂直,
∴四邊形是正方形.∴
.
∴.連結
,
.
∴,又N中
的中點,∴
.
∵與
相交于點C,∴MN
平面
. --------------9分
⑶由⑵知MN是三棱錐M-的高.在直角
中,
,
∴MN=.又
.
如圖,三棱錐中,側面
底面
,
,且
,
.(Ⅰ)求證:
平面
;
(Ⅱ)若為側棱PB的中點,求直線AE與底面
所成角的正弦值.
【解析】第一問中,利用由知,
,
又AP=PC=2,所以AC=2,
又AB=4, BC=2,,所以
,所以
,即
,
又平面平面ABC,平面
平面ABC=AC,
平面ABC,
平面ACP,所以
第二問中結合取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,因為PA=PC,所以PO⊥AC,同(Ⅰ)易證
平面ABC,又EH//PO,所以EH平面
ABC ,
則為直線AE與底面ABC 所成角,
解
(Ⅰ) 證明:由用由知,
,
又AP=PC=2,所以AC=2,
又AB=4, BC=2,,所以
,所以
,即
,
又平面平面ABC,平面
平面ABC=AC,
平面ABC,
平面ACP,所以
………………………………………………6分
(Ⅱ)如圖, 取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,
因為PA=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,
又EH//PO,所以EH平面ABC ,
則為直線AE與底面ABC 所成角,
且………………………………………10分
又PO=1/2AC=,也所以有EH=1/2PO=
,
由(Ⅰ)已證平面PBC,所以
,即
,
故,
于是
所以直線AE與底面ABC 所成角的正弦值為
如圖,在直三棱柱中,底面
為等腰直角三角形,
,
為棱
上一點,且平面
平面
.
(Ⅰ)求證:點為棱
的中點;
(Ⅱ)判斷四棱錐和
的體積是否相等,并證明。
【解析】本試題主要考查了立體幾何中的體積問題的運用。第一問中,
易知,
面
。由此知:
從而有
又點
是
的中點,所以
,所以
點為棱
的中點.
(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D為BB1中點,可以得證。
(1)過點作
于
點,取
的中點
,連
。
面
面
且相交于
,面
內的直線
,
面
。……3分
又面
面
且相交于
,且
為等腰三角形,易知
,
面
。由此知:
,從而有
共面,又易知
面
,故有
從而有
又點
是
的中點,所以
,所以
點為棱
的中點.
…6分
(2)相等.ABC-A1B1C1為直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,
∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D為BB1中點,∴VA1-B1C1CD=VC-A1ABD
已知向量(
),向量
,
,
且.
(Ⅰ)求向量;
(Ⅱ)若
,
,求
.
【解析】本試題主要考查了向量的數量積的運算,以及兩角和差的三角函數關系式的運用。
(1)問中∵,∴
,…………………1分
∵,得到三角關系是
,結合
,解得。
(2)由,解得
,
,結合二倍角公式
,和
,代入到兩角和的三角函數關系式中就可以求解得到。
解析一:(Ⅰ)∵,∴
,…………1分
∵,∴
,即
① …………2分
又 ② 由①②聯立方程解得,
,
5分
∴ ……………6分
(Ⅱ)∵即
,
, …………7分
∴,
………8分
又∵, ………9分
, ……10分
∴.
解法二: (Ⅰ),…………………………………1分
又,∴
,即
,①……2分
又 ②
將①代入②中,可得 ③ …………………4分
將③代入①中,得……………………………………5分
∴ …………………………………6分
(Ⅱ) 方法一
∵,
,∴
,且
……7分
∴,從而
. …………………8分
由(Ⅰ)知,
; ………………9分
∴. ………………………………10分
又∵,∴
,
又
,∴
……11分
綜上可得 ………………………………12分
方法二∵,
,∴
,且
…………7分
∴.
……………8分
由(Ⅰ)知,
.
…………9分
∴
……………10分
∵,且注意到
,
∴,又
,∴
………………………11分
綜上可得 …………………12分
(若用,又∵
∴
,
如圖,分別是橢圓
:
+
=1(
)的左、右焦點,
是橢圓
的頂點,
是直線
與橢圓
的另一個交點,
=60°.
(Ⅰ)求橢圓的離心率;
(Ⅱ)已知△的面積為40
,求
的值.
【解析】 (Ⅰ)由題=60°,則
,即橢圓
的離心率為
。
(Ⅱ)因△的面積為40
,設
,又面積公式
,又直線
,
又由(Ⅰ)知,聯立方程可得
,整理得
,解得
,
,所以
,解得
。
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com