題目列表(包括答案和解析)
解析:由題意知
當-2≤x≤1時,f(x)=x-2,
當1<x≤2時,f(x)=x3-2,
又∵f(x)=x-2,f(x)=x3-2在定義域上都為增函數,
∴f(x)的最大值為f(2)=23-2=6.
答案:C
解析:由正視圖、側視圖可知,此幾何體的體積最小時,底層有5個小正方體,上面有2個小正方體,共7個小正方體;體積最大時,底層有9個小正方體,上面有2個小正方體,共11個小正方體,故這個幾何體的最大體積與最小體積的差是4.
答案:C
求經過點P(1,2)的直線,且使A(2,3),B(0, -5)到它的距離相等的直線方程.
參考答案與解析:思路分析:由題目可獲取以下主要信息:
①所求直線過點P(1,2);
②點A(2,3),B(0,-5)到所求直線距離相等.
解析:依題意得f(x)的圖象關于直線x=1對稱,f(x+1)=-f(x-1),f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x),即函數f(x)是以4為周期的函數.由f(x)在[3,5]上是增函數與f(x)的圖象關于直線x=1對稱得,f(x)在[-3,-1]上是減函數.又函數f(x)是以4為周期的函數,因此f(x)在[1,3]上是減函數,f(x)在[1,3]上的最大值是f(1),最小值是f(3).
答案:A
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com