題目列表(包括答案和解析)
力學單位制
物理學的關系式確定了物理量之間的數量關系的同時,也確定了物理量間的________,選定幾個物理量的單位,就能夠利用物理量之間的關系推導其他物理量的單位,被選定的物理量叫做________,它們的單位叫做________,由基本物理量的單位根據物理關系式推導出來的其他物理量的單位叫做________,基本單位和導出單位一起組成了________.
國際單位制在力學范圍內,選定了________、________、________作為基本物理量,它們的單位是________、________、________.
在物理計算中,對于單位的要求是________.
第六部分 振動和波
第一講 基本知識介紹
《振動和波》的競賽考綱和高考要求有很大的不同,必須做一些相對詳細的補充。
一、簡諧運動
1、簡諧運動定義:= -k
①
凡是所受合力和位移滿足①式的質點,均可稱之為諧振子,如彈簧振子、小角度單擺等。
諧振子的加速度:= -
2、簡諧運動的方程
回避高等數學工具,我們可以將簡諧運動看成勻速圓周運動在某一條直線上的投影運動(以下均看在x方向的投影),圓周運動的半徑即為簡諧運動的振幅A 。
依據:x = -mω2Acosθ= -mω2
對于一個給定的勻速圓周運動,m、ω是恒定不變的,可以令:
mω2 = k
這樣,以上兩式就符合了簡諧運動的定義式①。所以,x方向的位移、速度、加速度就是簡諧運動的相關規律。從圖1不難得出——
位移方程: = Acos(ωt + φ) ②
速度方程: = -ωAsin(ωt +φ) ③
加速度方程:= -ω2A cos(ωt +φ) ④
相關名詞:(ωt +φ)稱相位,φ稱初相。
運動學參量的相互關系:= -ω2
A =
tgφ= -
3、簡諧運動的合成
a、同方向、同頻率振動合成。兩個振動x1 = A1cos(ωt +φ1)和x2 = A2cos(ωt +φ2) 合成,可令合振動x = Acos(ωt +φ) ,由于x = x1 + x2 ,解得
A = ,φ= arctg
顯然,當φ2-φ1 = 2kπ時(k = 0,±1,±2,…),合振幅A最大,當φ2-φ1 = (2k + 1)π時(k = 0,±1,±2,…),合振幅最小。
b、方向垂直、同頻率振動合成。當質點同時參與兩個垂直的振動x = A1cos(ωt + φ1)和y = A2cos(ωt + φ2)時,這兩個振動方程事實上已經構成了質點在二維空間運動的軌跡參數方程,消去參數t后,得一般形式的軌跡方程為
+
-2
cos(φ2-φ1) = sin2(φ2-φ1)
顯然,當φ2-φ1 = 2kπ時(k = 0,±1,±2,…),有y = x ,軌跡為直線,合運動仍為簡諧運動;
當φ2-φ1 = (2k + 1)π時(k = 0,±1,±2,…),有+
= 1 ,軌跡為橢圓,合運動不再是簡諧運動;
當φ2-φ1取其它值,軌跡將更為復雜,稱“李薩如圖形”,不是簡諧運動。
c、同方向、同振幅、頻率相近的振動合成。令x1 = Acos(ω1t + φ)和x2 = Acos(ω2t + φ) ,由于合運動x = x1 + x2 ,得:x =(2Acost)cos(
t +φ)。合運動是振動,但不是簡諧運動,稱為角頻率為
的“拍”現象。
4、簡諧運動的周期
由②式得:ω= ,而圓周運動的角速度和簡諧運動的角頻率是一致的,所以
T = 2π ⑤
5、簡諧運動的能量
一個做簡諧運動的振子的能量由動能和勢能構成,即
=
mv2 +
kx2 =
kA2
注意:振子的勢能是由(回復力系數)k和(相對平衡位置位移)x決定的一個抽象的概念,而不是具體地指重力勢能或彈性勢能。當我們計量了振子的抽象勢能后,其它的具體勢能不能再做重復計量。
6、阻尼振動、受迫振動和共振
和高考要求基本相同。
二、機械波
1、波的產生和傳播
產生的過程和條件;傳播的性質,相關參量(決定參量的物理因素)
2、機械波的描述
a、波動圖象。和振動圖象的聯系
b、波動方程
如果一列簡諧波沿x方向傳播,振源的振動方程為y = Acos(ωt + φ),波的傳播速度為v ,那么在離振源x處一個振動質點的振動方程便是
y = Acos〔ωt + φ - ·2π〕= Acos〔ω(t -
)+ φ〕
這個方程展示的是一個復變函數。對任意一個時刻t ,都有一個y(x)的正弦函數,在x-y坐標下可以描繪出一個瞬時波形。所以,稱y = Acos〔ω(t - )+ φ〕為波動方程。
3、波的干涉
a、波的疊加。幾列波在同一介質種傳播時,能獨立的維持它們的各自形態傳播,在相遇的區域則遵從矢量疊加(包括位移、速度和加速度的疊加)。
b、波的干涉。兩列波頻率相同、相位差恒定時,在同一介質中的疊加將形成一種特殊形態:振動加強的區域和振動削弱的區域穩定分布且彼此隔開。
我們可以用波程差的方法來討論干涉的定量規律。如圖2所示,我們用S1和S2表示兩個波源,P表示空間任意一點。
當振源的振動方向相同時,令振源S1的振動方程為y1 = A1cosωt ,振源S1的振動方程為y2 = A2cosωt ,則在空間P點(距S1為r1 ,距S2為r2),兩振源引起的分振動分別是
y1′= A1cos〔ω(t ? )〕
y2′= A2cos〔ω(t ? )〕
P點便出現兩個頻率相同、初相不同的振動疊加問題(φ1 = ,φ2 =
),且初相差Δφ=
(r2 – r1)。根據前面已經做過的討論,有
r2 ? r1 = kλ時(k = 0,±1,±2,…),P點振動加強,振幅為A1 + A2 ;
r2 ? r1 =(2k ? 1)時(k = 0,±1,±2,…),P點振動削弱,振幅為│A1-A2│。
4、波的反射、折射和衍射
知識點和高考要求相同。
5、多普勒效應
當波源或者接受者相對與波的傳播介質運動時,接收者會發現波的頻率發生變化。多普勒效應的定量討論可以分為以下三種情況(在討論中注意:波源的發波頻率f和波相對介質的傳播速度v是恒定不變的)——
a、只有接收者相對介質運動(如圖3所示)
設接收者以速度v1正對靜止的波源運動。
如果接收者靜止在A點,他單位時間接收的波的個數為f ,
當他迎著波源運動時,設其在單位時間到達B點,則= v1 ,、
在從A運動到B的過程中,接收者事實上“提前”多接收到了n個波
n = =
=
顯然,在單位時間內,接收者接收到的總的波的數目為:f + n = f ,這就是接收者發現的頻率f1 。即
f1 = f
顯然,如果v1背離波源運動,只要將上式中的v1代入負值即可。如果v1的方向不是正對S ,只要將v1出正對的分量即可。
b、只有波源相對介質運動(如圖4所示)
設波源以速度v2正對靜止的接收者運動。
如果波源S不動,在單位時間內,接收者在A點應接收f個波,故S到A的距離:= fλ
在單位時間內,S運動至S′,即= v2 。由于波源的運動,事實造成了S到A的f個波被壓縮在了S′到A的空間里,波長將變短,新的波長
λ′= =
=
=
而每個波在介質中的傳播速度仍為v ,故“被壓縮”的波(A接收到的波)的頻率變為
f2 = =
f
當v2背離接收者,或有一定夾角的討論,類似a情形。
c、當接收者和波源均相對傳播介質運動
當接收者正對波源以速度v1(相對介質速度)運動,波源也正對接收者以速度v2(相對介質速度)運動,我們的討論可以在b情形的過程上延續…
f3 =
f2 =
f
關于速度方向改變的問題,討論類似a情形。
6、聲波
a、樂音和噪音
b、聲音的三要素:音調、響度和音品
c、聲音的共鳴
第二講 重要模型與專題
一、簡諧運動的證明與周期計算
物理情形:如圖5所示,將一粗細均勻、兩邊開口的U型管固定,其中裝有一定量的水銀,汞柱總長為L 。當水銀受到一個初始的擾動后,開始在管中振動。忽略管壁對汞的阻力,試證明汞柱做簡諧運動,并求其周期。
模型分析:對簡諧運動的證明,只要以汞柱為對象,看它的回復力與位移關系是否滿足定義式①,值得注意的是,回復力系指振動方向上的合力(而非整體合力)。當簡諧運動被證明后,回復力系數k就有了,求周期就是順理成章的事。
本題中,可設汞柱兩端偏離平衡位置的瞬時位移為x 、水銀密度為ρ、U型管橫截面積為S ,則次瞬時的回復力
ΣF = ρg2xS = x
由于L、m為固定值,可令: = k ,而且ΣF與x的方向相反,故汞柱做簡諧運動。
周期T = 2π= 2π
答:汞柱的周期為2π 。
學生活動:如圖6所示,兩個相同的柱形滾輪平行、登高、水平放置,繞各自的軸線等角速、反方向地轉動,在滾輪上覆蓋一塊均質的木板。已知兩滾輪軸線的距離為L 、滾輪與木板之間的動摩擦因素為μ、木板的質量為m ,且木板放置時,重心不在兩滾輪的正中央。試證明木板做簡諧運動,并求木板運動的周期。
思路提示:找平衡位置(木板重心在兩滾輪中央處)→ú力矩平衡和Σ?F6= 0結合求兩處彈力→ú求摩擦力合力…
答案:木板運動周期為2π 。
鞏固應用:如圖7所示,三根長度均為L = 2.00m地質量均勻直桿,構成一正三角形框架ABC,C點懸掛在一光滑水平軸上,整個框架可繞轉軸轉動。桿AB是一導軌,一電動松鼠可在導軌上運動。現觀察到松鼠正在導軌上運動,而框架卻靜止不動,試討論松鼠的運動是一種什么樣的運動。
解說:由于框架靜止不動,松鼠在豎直方向必平衡,即:松鼠所受框架支持力等于松鼠重力。設松鼠的質量為m ,即:
N = mg ①
再回到框架,其靜止平衡必滿足框架所受合力矩為零。以C點為轉軸,形成力矩的只有松鼠的壓力N、和松鼠可能加速的靜摩擦力f ,它們合力矩為零,即:
MN = Mf
現考查松鼠在框架上的某個一般位置(如圖7,設它在導軌方向上距C點為x),上式即成:
N·x = f·Lsin60° ②
解①②兩式可得:f = x ,且f的方向水平向左。
根據牛頓第三定律,這個力就是松鼠在導軌方向上的合力。如果我們以C在導軌上的投影點為參考點,x就是松鼠的瞬時位移。再考慮到合力與位移的方向因素,松鼠的合力與位移滿足關系——
= -k
其中k = ,對于這個系統而言,k是固定不變的。
顯然這就是簡諧運動的定義式。
答案:松鼠做簡諧運動。
評說:這是第十三屆物理奧賽預賽試題,問法比較模糊。如果理解為定性求解,以上答案已經足夠。但考慮到原題中還是有定量的條件,所以做進一步的定量運算也是有必要的。譬如,我們可以求出松鼠的運動周期為:T = 2π = 2π
= 2.64s 。
二、典型的簡諧運動
1、彈簧振子
物理情形:如圖8所示,用彈性系數為k的輕質彈簧連著一個質量為m的小球,置于傾角為θ
第九部分 穩恒電流
第一講 基本知識介紹
第八部分《穩恒電流》包括兩大塊:一是“恒定電流”,二是“物質的導電性”。前者是對于電路的外部計算,后者則是深入微觀空間,去解釋電流的成因和比較不同種類的物質導電的情形有什么區別。
應該說,第一塊的知識和高考考綱對應得比較好,深化的部分是對復雜電路的計算(引入了一些新的處理手段)。第二塊雖是全新的內容,但近幾年的考試已經很少涉及,以至于很多奧賽培訓資料都把它刪掉了。鑒于在奧賽考綱中這部分內容還保留著,我們還是想粗略地介紹一下。
一、歐姆定律
1、電阻定律
a、電阻定律 R = ρ
b、金屬的電阻率 ρ = ρ0(1 + αt)
2、歐姆定律
a、外電路歐姆定律 U = IR ,順著電流方向電勢降落
b、含源電路歐姆定律
在如圖8-1所示的含源電路中,從A點到B點,遵照原則:①遇電阻,順電流方向電勢降落(逆電流方向電勢升高)②遇電源,正極到負極電勢降落,負極到正極電勢升高(與電流方向無關),可以得到以下關系
UA ? IR ? ε ? Ir = UB
這就是含源電路歐姆定律。
c、閉合電路歐姆定律
在圖8-1中,若將A、B兩點短接,則電流方向只可能向左,含源電路歐姆定律成為
UA + IR ? ε + Ir = UB = UA
即 ε = IR + Ir ,或 I =
這就是閉合電路歐姆定律。值得注意的的是:①對于復雜電路,“干路電流I”不能做絕對的理解(任何要考察的一條路均可視為干路);②電源的概念也是相對的,它可以是多個電源的串、并聯,也可以是電源和電阻組成的系統;③外電阻R可以是多個電阻的串、并聯或混聯,但不能包含電源。
二、復雜電路的計算
1、戴維南定理:一個由獨立源、線性電阻、線性受控源組成的二端網絡,可以用一個電壓源和電阻串聯的二端網絡來等效。(事實上,也可等效為“電流源和電阻并聯的的二端網絡”——這就成了諾頓定理。)
應用方法:其等效電路的電壓源的電動勢等于網絡的開路電壓,其串聯電阻等于從端鈕看進去該網絡中所有獨立源為零值時的等效電阻。
2、基爾霍夫(克希科夫)定律
a、基爾霍夫第一定律:在任一時刻流入電路中某一分節點的電流強度的總和,等于從該點流出的電流強度的總和。
例如,在圖8-2中,針對節點P ,有
I2 + I3 = I1
基爾霍夫第一定律也被稱為“節點電流定律”,它是電荷受恒定律在電路中的具體體現。
對于基爾霍夫第一定律的理解,近來已經拓展為:流入電路中某一“包容塊”的電流強度的總和,等于從該“包容塊”流出的電流強度的總和。
b、基爾霍夫第二定律:在電路中任取一閉合回路,并規定正的繞行方向,其中電動勢的代數和,等于各部分電阻(在交流電路中為阻抗)與電流強度乘積的代數和。
例如,在圖8-2中,針對閉合回路① ,有
ε3 ? ε2 = I3 ( r3 + R2 + r2 ) ? I2R2
基爾霍夫第二定律事實上是含源部分電路歐姆定律的變體(☆同學們可以列方程 UP = … = UP得到和上面完全相同的式子)。
3、Y?Δ變換
在難以看清串、并聯關系的電路中,進行“Y型?Δ型”的相互轉換常常是必要的。在圖8-3所示的電路中
☆同學們可以證明Δ→ Y的結論…
Rc =
Rb =
Ra =
Y→Δ的變換稍稍復雜一些,但我們仍然可以得到
R1 =
R2 =
R3 =
三、電功和電功率
1、電源
使其他形式的能量轉變為電能的裝置。如發電機、電池等。發電機是將機械能轉變為電能;干電池、蓄電池是將化學能轉變為電能;光電池是將光能轉變為電能;原子電池是將原子核放射能轉變為電能;在電子設備中,有時也把變換電能形式的裝置,如整流器等,作為電源看待。
電源電動勢定義為電源的開路電壓,內阻則定義為沒有電動勢時電路通過電源所遇到的電阻。據此不難推出相同電源串聯、并聯,甚至不同電源串聯、并聯的時的電動勢和內阻的值。
例如,電動勢、內阻分別為ε1 、r1和ε2 、r2的電源并聯,構成的新電源的電動勢ε和內阻r分別為(☆師生共同推導…)
ε =
r =
2、電功、電功率
電流通過電路時,電場力對電荷作的功叫做電功W。單位時間內電場力所作的功叫做電功率P 。
計算時,只有W = UIt和P = UI是完全沒有條件的,對于不含源的純電阻,電功和焦耳熱重合,電功率則和熱功率重合,有W = I2Rt = t和P = I2R =
。
對非純電阻電路,電功和電熱的關系依據能量守恒定律求解。
四、物質的導電性
在不同的物質中,電荷定向移動形成電流的規律并不是完全相同的。
1、金屬中的電流
即通常所謂的不含源純電阻中的電流,規律遵從“外電路歐姆定律”。
2、液體導電
能夠導電的液體叫電解液(不包括液態金屬)。電解液中離解出的正負離子導電是液體導電的特點(如:硫酸銅分子在通常情況下是電中性的,但它在溶液里受水分子的作用就會離解成銅離子Cu2+和硫酸根離子S,它們在電場力的作用下定向移動形成電流)。
在電解液中加電場時,在兩個電極上(或電極旁)同時產生化學反應的過程叫作“電解”。電解的結果是在兩個極板上(或電極旁)生成新的物質。
液體導電遵從法拉第電解定律——
法拉第電解第一定律:電解時在電極上析出或溶解的物質的質量和電流強度、跟通電時間成正比。表達式:m = kIt = KQ (式中Q為析出質量為m的物質所需要的電量;K為電化當量,電化當量的數值隨著被析出的物質種類而不同,某種物質的電化當量在數值上等于通過1C電量時析出的該種物質的質量,其單位為kg/C。)
法拉第電解第二定律:物質的電化當量K和它的化學當量成正比。某種物質的化學當量是該物質的摩爾質量M(克原子量)和它的化合價n的比值,即 K = ,而F為法拉第常數,對任何物質都相同,F = 9.65×104C/mol 。
將兩個定律聯立可得:m = Q 。
3、氣體導電
氣體導電是很不容易的,它的前提是氣體中必須出現可以定向移動的離子或電子。按照“載流子”出現方式的不同,可以把氣體放電分為兩大類——
a、被激放電
在地面放射性元素的輻照以及紫外線和宇宙射線等的作用下,會有少量氣體分子或原子被電離,或在有些燈管內,通電的燈絲也會發射電子,這些“載流子”均會在電場力作用下產生定向移動形成電流。這種情況下的電流一般比較微弱,且遵從歐姆定律。典型的被激放電情形有
b、自激放電
但是,當電場足夠強,電子動能足夠大,它們和中性氣體相碰撞時,可以使中性分子電離,即所謂碰撞電離。同時,在正離子向陰極運動時,由于以很大的速度撞到陰極上,還可能從陰極表面上打出電子來,這種現象稱為二次電子發射。碰撞電離和二次電子發射使氣體中在很短的時間內出現了大量的電子和正離子,電流亦迅速增大。這種現象被稱為自激放電。自激放電不遵從歐姆定律。
常見的自激放電有四大類:輝光放電、弧光放電、火花放電、電暈放電。
4、超導現象
據金屬電阻率和溫度的關系,電阻率會隨著溫度的降低和降低。當電阻率降為零時,稱為超導現象。電阻率為零時對應的溫度稱為臨界溫度。超導現象首先是荷蘭物理學家昂尼斯發現的。
超導的應用前景是顯而易見且相當廣闊的。但由于一般金屬的臨界溫度一般都非常低,故產業化的價值不大,為了解決這個矛盾,科學家們致力于尋找或合成臨界溫度比較切合實際的材料就成了當今前沿科技的一個熱門領域。當前人們的研究主要是集中在合成材料方面,臨界溫度已經超過100K,當然,這個溫度距產業化的期望值還很遠。
5、半導體
半導體的電阻率界于導體和絕緣體之間,且ρ
2s |
t2 |
△s |
T2 |
次數 物理量 |
1 | 2 | 3 | 4 | 5 | 6 |
m砂和桶(kg) | 0.010 | 0.020 | 0.030 | 0.040 | 0.050 | 0.060 |
a(m/s2) | 0.196 | 0.390 | 0.718 | 0.784 | 0.990 | 1.176 |
第七部分 熱學
熱學知識在奧賽中的要求不以深度見長,但知識點卻非常地多(考綱中羅列的知識點幾乎和整個力學——前五部分——的知識點數目相等)。而且,由于高考要求對熱學的要求逐年降低(本屆尤其低得“離譜”,連理想氣體狀態方程都沒有了),這就客觀上給奧賽培訓增加了負擔。因此,本部分只能采新授課的培訓模式,將知識點和例題講解及時地結合,爭取讓學員學一點,就領會一點、鞏固一點,然后再層疊式地往前推進。
一、分子動理論
1、物質是由大量分子組成的(注意分子體積和分子所占據空間的區別)
對于分子(單原子分子)間距的計算,氣體和液體可直接用,對固體,則與分子的空間排列(晶體的點陣)有關。
【例題1】如圖6-1所示,食鹽(NaCl)的晶體是由鈉離子(圖中的白色圓點表示)和氯離子(圖中的黑色圓點表示)組成的,離子鍵兩兩垂直且鍵長相等。已知食鹽的摩爾質量為58.5×10-3kg/mol,密度為2.2×103kg/m3,阿伏加德羅常數為6.0×1023mol-1,求食鹽晶體中兩個距離最近的鈉離子中心之間的距離。
【解說】題意所求即圖中任意一個小立方塊的變長(設為a)的倍,所以求a成為本題的焦點。
由于一摩爾的氯化鈉含有NA個氯化鈉分子,事實上也含有2NA個鈉離子(或氯離子),所以每個鈉離子占據空間為 v =
而由圖不難看出,一個離子占據的空間就是小立方體的體積a3 ,
即 a3 = =
,最后,鄰近鈉離子之間的距離l =
a
【答案】3.97×10-10m 。
〖思考〗本題還有沒有其它思路?
〖答案〗每個離子都被八個小立方體均分,故一個小立方體含有×8個離子 =
分子,所以…(此法普遍適用于空間點陣比較復雜的晶體結構。)
2、物質內的分子永不停息地作無規則運動
固體分子在平衡位置附近做微小振動(振幅數量級為0.1),少數可以脫離平衡位置運動。液體分子的運動則可以用“長時間的定居(振動)和短時間的遷移”來概括,這是由于液體分子間距較固體大的結果。氣體分子基本“居無定所”,不停地遷移(常溫下,速率數量級為102m/s)。
無論是振動還是遷移,都具備兩個特點:a、偶然無序(雜亂無章)和統計有序(分子數比率和速率對應一定的規律——如麥克斯韋速率分布函數,如圖6-2所示);b、劇烈程度和溫度相關。
氣體分子的三種速率。最可幾速率vP :f(v) = (其中ΔN表示v到v +Δv內分子數,N表示分子總數)極大時的速率,vP =
=
;平均速率
:所有分子速率的算術平均值,
=
=
;方均根速率
:與分子平均動能密切相關的一個速率,
=
=
〔其中R為普適氣體恒量,R = 8.31J/(mol.K)。k為玻耳茲曼常量,k =
= 1.38×10-23J/K 〕
【例題2】證明理想氣體的壓強P = n
,其中n為分子數密度,
為氣體分子平均動能。
【證明】氣體的壓強即單位面積容器壁所承受的分子的撞擊力,這里可以設理想氣體被封閉在一個邊長為a的立方體容器中,如圖6-3所示。
考查yoz平面的一個容器壁,P = ①
設想在Δt時間內,有Nx個分子(設質量為m)沿x方向以恒定的速率vx碰撞該容器壁,且碰后原速率彈回,則根據動量定理,容器壁承受的壓力
F ==
②
在氣體的實際狀況中,如何尋求Nx和vx呢?
考查某一個分子的運動,設它的速度為v ,它沿x、y、z三個方向分解后,滿足
v2 = +
+
分子運動雖然是雜亂無章的,但仍具有“偶然無序和統計有序”的規律,即
=
+
+
= 3
③
這就解決了vx的問題。另外,從速度的分解不難理解,每一個分子都有機會均等的碰撞3個容器壁的可能。設Δt = ,則
Nx = ·3N總 =
na3 ④
注意,這里的是指有6個容器壁需要碰撞,而它們被碰的幾率是均等的。
結合①②③④式不難證明題設結論。
〖思考〗此題有沒有更簡便的處理方法?
〖答案〗有。“命令”所有分子以相同的速率v沿+x、?x、+y、?y、+z、?z這6個方向運動(這樣造成的宏觀效果和“雜亂無章”地運動時是一樣的),則 Nx =N總 =
na3 ;而且vx = v
所以,P = =
=
=
nm
=
n
3、分子間存在相互作用力(注意分子斥力和氣體分子碰撞作用力的區別),而且引力和斥力同時存在,宏觀上感受到的是其合效果。
分子力是保守力,分子間距改變時,分子力做的功可以用分子勢能的變化表示,分子勢能EP隨分子間距的變化關系如圖6-4所示。
分子勢能和動能的總和稱為物體的內能。
二、熱現象和基本熱力學定律
1、平衡態、狀態參量
a、凡是與溫度有關的現象均稱為熱現象,熱學是研究熱現象的科學。熱學研究的對象都是有大量分子組成的宏觀物體,通稱為熱力學系統(簡稱系統)。當系統的宏觀性質不再隨時間變化時,這樣的狀態稱為平衡態。
b、系統處于平衡態時,所有宏觀量都具有確定的值,這些確定的值稱為狀態參量(描述氣體的狀態參量就是P、V和T)。
c、熱力學第零定律(溫度存在定律):若兩個熱力學系統中的任何一個系統都和第三個熱力學系統處于熱平衡狀態,那么,這兩個熱力學系統也必定處于熱平衡。這個定律反映出:處在同一熱平衡狀態的所有的熱力學系統都具有一個共同的宏觀特征,這一特征是由這些互為熱平衡系統的狀態所決定的一個數值相等的狀態函數,這個狀態函數被定義為溫度。
2、溫度
a、溫度即物體的冷熱程度,溫度的數值表示法稱為溫標。典型的溫標有攝氏溫標t、華氏溫標F(F = t + 32)和熱力學溫標T(T = t + 273.15)。
b、(理想)氣體溫度的微觀解釋: =
kT (i為分子的自由度 = 平動自由度t + 轉動自由度r + 振動自由度s 。對單原子分子i = 3 ,“剛性”〈忽略振動,s = 0,但r = 2〉雙原子分子i = 5 。對于三個或三個以上的多原子分子,i = 6 。能量按自由度是均分的),所以說溫度是物質分子平均動能的標志。
c、熱力學第三定律:熱力學零度不可能達到。(結合分子動理論的觀點2和溫度的微觀解釋很好理解。)
3、熱力學過程
a、熱傳遞。熱傳遞有三種方式:傳導(對長L、橫截面積S的柱體,Q = KSΔ
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com