日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

3.. 令.即.解得 當時..當時.. ∴函數在點處取得極小值.也是最小值為 即. 查看更多

 

題目列表(包括答案和解析)

f (x)=sin 2x(sin x-cos x)(sin x+cos x),其中x∈R.

(Ⅰ) 該函數的圖象可由 的圖象經過怎樣的平移和伸縮變換得到?

(Ⅱ)若f (θ)=,其中,求cos(θ)的值;

【解析】第一問中,

變換分為三步,①把函數的圖象向右平移,得到函數的圖象;

②令所得的圖象上各點的縱坐標不變,把橫坐標縮短到原來的倍,得到函數的圖象;

③令所得的圖象上各點的橫坐標不變,把縱坐標伸長到原來的2倍,得到函數的圖象;

第二問中因為,所以,則,又 ,,從而

進而得到結論。

(Ⅰ) 解:

!3

變換的步驟是:

①把函數的圖象向右平移,得到函數的圖象;

②令所得的圖象上各點的縱坐標不變,把橫坐標縮短到原來的倍,得到函數的圖象;

③令所得的圖象上各點的橫坐標不變,把縱坐標伸長到原來的2倍,得到函數的圖象;…………………………………3

(Ⅱ) 解:因為,所以,則,又 ,,從而……2

(1)當時,;…………2

(2)當時;

 

查看答案和解析>>

某省環保研究所對市中心每天環境放射性污染情況進行調查研究后,發現一天中環境綜合放射性污染指數與時刻(時) 的關系為,其中是與氣象有關的參數,且

(1)令, ,寫出該函數的單調區間,并選擇其中一種情形進行證明;

(2)若用每天的最大值作為當天的綜合放射性污染指數,并記作,求;

(3)省政府規定,每天的綜合放射性污染指數不得超過2,試問目前市中心的綜合放射性污染指數是否超標?

【解析】第一問利用定義法求證單調性,并判定結論。

第二問(2)由函數的單調性知,

,即t的取值范圍是. 

時,記

 

上單調遞減,在上單調遞增,

第三問因為當且僅當時,.

故當時不超標,當時超標.

 

查看答案和解析>>

已知函數f(x)=alnx-x2+1.

(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數a和b的值;

(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二問中,利用當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數,

不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,

即f(x1)+x1≥f(x2)+x2,結合構造函數和導數的知識來解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數,

不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數,

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0時恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范圍是

 

查看答案和解析>>

設函數

(I)求的單調區間;

(II)當0<a<2時,求函數在區間上的最小值.

【解析】第一問定義域為真數大于零,得到.                            

,則,所以,得到結論。

第二問中, ().

.                          

因為0<a<2,所以,.令 可得

對參數討論的得到最值。

所以函數上為減函數,在上為增函數.

(I)定義域為.           ………………………1分

.                            

,則,所以.  ……………………3分          

因為定義域為,所以.                            

,則,所以

因為定義域為,所以.          ………………………5分

所以函數的單調遞增區間為,

單調遞減區間為.                         ………………………7分

(II) ().

.                          

因為0<a<2,所以,.令 可得.…………9分

所以函數上為減函數,在上為增函數.

①當,即時,            

在區間上,上為減函數,在上為增函數.

所以.         ………………………10分  

②當,即時,在區間上為減函數.

所以.               

綜上所述,當時,;

時,

 

查看答案和解析>>

如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花園AMPN,要求B在AM上,D在AN上,且對角線MN過C點,|AB|=3米,|AD|=2米,

(I)要使矩形AMPN的面積大于32平方米,則AN的長應在什么范圍內?

(II)當AN的長度是多少時,矩形AMPN的面積最小?并求出最小面積.

(Ⅲ)若AN的長度不少于6米,則當AN的長度是多少時,矩形AMPN的面積最。坎⑶蟪鲎钚∶娣e.

【解析】本題主要考查函數的應用,導數及均值不等式的應用等,考查學生分析問題和解決問題的能力   第一問要利用相似比得到結論。

(I)由SAMPN > 32 得 > 32 ,

∵x >2,∴,即(3x-8)(x-8)> 0

∴2<X<8/3,即AN長的取值范圍是(2,8/3)或(8,+)

第二問,  

當且僅當

(3)令

∴當x > 4,y′> 0,即函數y=在(4,+∞)上單調遞增,∴函數y=在[6,+∞]上也單調遞增.                

∴當x=6時y=取得最小值,即SAMPN取得最小值27(平方米).

 

查看答案和解析>>


同步練習冊答案
主站蜘蛛池模板: av一区二区三区 | 国产精品久久婷婷六月丁香 | 精品一区国产 | 久久99精品久久久久久久青青日本 | 日本不卡一| 国产精品永久免费视频 | 成人午夜视频在线观看 | 黄色片com| 色噜噜色狠狠 | 国产视频91在线 | 国产精品欧美一区二区三区 | 日本欧美日韩 | 欧美视频网站 | 狠狠艹| www.黄网| 日韩在线看片 | 欧美日韩国产精品久久久久 | 亚洲精品1 | 黄色av网站在线观看 | 免费视频一区 | 亚洲视频中文字幕 | 国产超碰在线 | 精品日韩欧美 | 久久69精品久久久久久久电影好 | 日韩精品在线播放 | 久久国产精品免费一区二区三区 | 亚洲欧美日韩在线一区 | 久久久婷婷 | 狠狠草视频 | 99国产精品99久久久久久 | 国产伦精品一区二区三区照片91 | 久久www免费人成看片高清 | 欧美日韩最新 | 久久青青| 99re6在线视频精品免费 | av中文字幕在线 | 久久亚洲精品中文字幕 | 可以在线观看的黄色 | 久久久激情视频 | 国产精品久久久久久福利一牛影视 | 国产99久久精品 |