題目列表(包括答案和解析)
為了解學(xué)生的體能情況,抽取了一個學(xué)校的部分學(xué)生進行一分鐘跳繩次數(shù)測試,將所得的數(shù)據(jù)整理后制成統(tǒng)計圖如圖.已知圖中從左到右前三千小組的頻率分別為:0.1,0.3,0.4,第一小組的頻數(shù)為5,請根據(jù)以上信息和圖形解決以下問題:
(1)參加這次測試的學(xué)生共有多少人?
(2)求第四小組的頻率;
(3)若次數(shù)在75次以上(含75次)為達標,那么學(xué)生的達標率是多少?
(4)在這次測試中,學(xué)生跳繩次數(shù)的中位數(shù)落在哪個小組內(nèi)?請說明理由.
為了解學(xué)生的體能情況,抽取了一個學(xué)校的部分學(xué)生進行一分鐘跳繩次數(shù)測試,將所得的數(shù)據(jù)整理后制成統(tǒng)計圖如圖.已知圖中從左到右前三個小組的頻率分別為:
0.1,0.3,0.4,第一小組的頻數(shù)為5,請根據(jù)以上信息和圖形解決以下問題:(1)
參加這次測試的學(xué)生共有多少人?(2)
求第四小組的頻率;(3)
若次數(shù)在75次以上(含75次)為達標,那么學(xué)生的達標率是多少?(4)
在這次測試中,學(xué)生跳繩次數(shù)的中位數(shù)落在哪個小組內(nèi)?請說明理由.已知中心在原點,焦點在軸上的橢圓
的離心率為
,且經(jīng)過點
.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存過點(2,1)的直線
與橢圓
相交于不同的兩點
,滿足
?若存在,求出直線
的方程;若不存在,請說明理由.
【解析】第一問利用設(shè)橢圓的方程為
,由題意得
解得
第二問若存在直線滿足條件的方程為
,代入橢圓
的方程得
.
因為直線與橢圓
相交于不同的兩點
,設(shè)
兩點的坐標分別為
,
所以
所以.解得。
解:⑴設(shè)橢圓的方程為
,由題意得
解得,故橢圓
的方程為
.……………………4分
⑵若存在直線滿足條件的方程為
,代入橢圓
的方程得
.
因為直線與橢圓
相交于不同的兩點
,設(shè)
兩點的坐標分別為
,
所以
所以.
又,
因為,即
,
所以.
即.
所以,解得
.
因為A,B為不同的兩點,所以k=1/2.
于是存在直線L1滿足條件,其方程為y=1/2x
已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線的焦點為F1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.
【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點坐標得到,又因為
,這樣可知得到
。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到
,再利用
可以結(jié)合韋達定理求解得到m的值和圓p的方程。
解:(Ⅰ)設(shè)橢圓E的方程為
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以橢圓E的方程為…………………………4分
(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分
代入橢圓E方程,得…………………………6分
………………………7分
、
………………8分
………………………9分
……………………………10分
當m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,
圓P的方程為(x-2)2+(y-1)2=4;………………………………11分
同理,當m=-3時,直線l方程為y=-x-3,
圓P的方程為(x+2)2+(y+1)2=4
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),若對任意
,
,不等式
恒成立,求實數(shù)
的取值范圍.
【解析】第一問利用的定義域是
由x>0及 得1<x<3;由x>0及
得0<x<1或x>3,
故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是
第二問中,若對任意不等式
恒成立,問題等價于
只需研究最值即可。
解: (I)的定義域是
......1分
............. 2分
由x>0及 得1<x<3;由x>0及
得0<x<1或x>3,
故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是
........4分
(II)若對任意不等式
恒成立,
問題等價于,
.........5分
由(I)可知,在上,x=1是函數(shù)極小值點,這個極小值是唯一的極值點,
故也是最小值點,所以; ............6分
當b<1時,;
當時,
;
當b>2時,;
............8分
問題等價于 ........11分
解得b<1 或 或
即
,所以實數(shù)b的取值范圍是
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com