題目列表(包括答案和解析)
如圖,在三棱柱中,
側(cè)面
,
為棱
上異于
的一點,
,已知
,求:
(Ⅰ)異面直線與
的距離;
(Ⅱ)二面角的平面角的正切值.
【解析】第一問中,利用建立空間直角坐標系
解:(I)以B為原點,、
分別為Y,Z軸建立空間直角坐標系.由于,
在三棱柱中有
,
設
又側(cè)面
,故
. 因此
是異面直線
的公垂線,則
,故異面直線
的距離為1.
(II)由已知有故二面角
的平面角
的大小為向量
與
的夾角.
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.
【解析】解法一:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).
(1)證明:易得,
于是
,所以
(2) ,
設平面PCD的法向量
,
則,即
.不防設
,可得
.可取平面PAC的法向量
于是
從而
.
所以二面角A-PC-D的正弦值為.
(3)設點E的坐標為(0,0,h),其中,由此得
.
由,故
所以,,解得
,即
.
解法二:(1)證明:由,可得
,又由
,
,故
.又
,所以
.
(2)如圖,作于點H,連接DH.由
,
,可得
.
因此,從而
為二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,
因此所以二面角
的正弦值為
.
(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設交點為F,連接BE,EF. 故
或其補角為異面直線BE與CD所成的角.由于BF∥CD,故
.在
中,
故
在中,由
,
,
可得.由余弦定理,
,
所以.
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令
.
當時
單調(diào)遞減;當
時
單調(diào)遞增,故當
時,
取最小值
于是對一切恒成立,當且僅當
. ①
令則
當時,
單調(diào)遞增;當
時,
單調(diào)遞減.
故當時,
取最大值
.因此,當且僅當
時,①式成立.
綜上所述,的取值集合為
.
(Ⅱ)由題意知,令
則
令,則
.當
時,
單調(diào)遞減;當
時,
單調(diào)遞增.故當
,
即
從而,
又
所以因為函數(shù)
在區(qū)間
上的圖像是連續(xù)不斷的一條曲線,所以存在
使
即
成立.
【點評】本題考查利用導函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學方法.第一問利用導函數(shù)法求出取最小值
對一切x∈R,f(x)
1恒成立轉(zhuǎn)化為
從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進行分析判斷.
已知函數(shù)的圖象過坐標原點O,且在點
處的切線的斜率是
.
(Ⅰ)求實數(shù)的值;
(Ⅱ)求在區(qū)間
上的最大值;
(Ⅲ)對任意給定的正實數(shù),曲線
上是否存在兩點P、Q,使得
是以O為直角頂點的直角三角形,且此三角形斜邊中點在
軸上?說明理由.
【解析】第一問當時,
,則
。
依題意得:,即
解得
第二問當時,
,令
得
,結(jié)合導數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值
第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在
軸兩側(cè)。
不妨設,則
,顯然
∵是以O為直角頂點的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
(Ⅰ)當時,
,則
。
依題意得:,即
解得
(Ⅱ)由(Ⅰ)知,
①當時,
,令
得
當變化時,
的變化情況如下表:
|
|
0 |
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
極小值 |
單調(diào)遞增 |
極大值 |
|
又,
,
。∴
在
上的最大值為2.
②當時,
.當
時,
,
最大值為0;
當時,
在
上單調(diào)遞增。∴
在
最大值為
。
綜上,當時,即
時,
在區(qū)間
上的最大值為2;
當時,即
時,
在區(qū)間
上的最大值為
。
(Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在
軸兩側(cè)。
不妨設,則
,顯然
∵是以O為直角頂點的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
若,則
代入(*)式得:
即,而此方程無解,因此
。此時
,
代入(*)式得: 即
(**)
令
,則
∴在
上單調(diào)遞增, ∵
∴
,∴
的取值范圍是
。
∴對于,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實數(shù),曲線
上存在兩點P、Q,使得
是以O為直角頂點的直角三角形,且此三角形斜邊中點在
軸上
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com