題目列表(包括答案和解析)
答案:D
解析:本題考查同角三角函數關系應用能力,先由cotA=知A為鈍角,cosA<0排除A和B,再由
選D
答案:D
解析:本題考查同角三角函數關系應用能力,先由cotA=知A為鈍角,cosA<0排除A和B,再由
選D
已知曲線的參數方程是
(
是參數),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
:的極坐標方程是
=2,正方形ABCD的頂點都在
上,且A,B,C,D依逆時針次序排列,點A的極坐標為(2,
).
(Ⅰ)求點A,B,C,D的直角坐標;
(Ⅱ)設P為上任意一點,求
的取值范圍.
【命題意圖】本題考查了參數方程與極坐標,是容易題型.
【解析】(Ⅰ)由已知可得,
,
,
,
即A(1,),B(-
,1),C(―1,―
),D(
,-1),
(Ⅱ)設,令
=
,
則=
=
,
∵,∴
的取值范圍是[32,52]
D
解析:由正弦定理得.又由橢圓定義得AB+BC=2×5=10.AC=8. 所以
D
解析:由正弦定理得.又由橢圓定義得AB+BC=2×5=10.AC=8. 所以
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com