題目列表(包括答案和解析)
(本小題滿分12分)如圖,在直三棱柱ABC―A1B1C1中,∠ACB = 90°. AC = BC = a,
D、E分別為棱AB、BC的中點, M為棱AA1上的點,二面角M―DE―A為30°.
(1)求MA的長;w.w.w.k.s.5.u.c.o.m
(2)求點C到平面MDE的距離。
(本小題滿分12分)某校高2010級數學培優學習小組有男生3人女生2人,這5人站成一排留影。
(1)求其中的甲乙兩人必須相鄰的站法有多少種? w.w.w.k.s.5.u.c.o.m
(2)求其中的甲乙兩人不相鄰的站法有多少種?
(3)求甲不站最左端且乙不站最右端的站法有多少種 ?
(本小題滿分12分)
某廠有一面舊墻長14米,現在準備利用這面舊墻建造平面圖形為矩形,面積為126平方米的廠房,工程條件是①建1米新墻費用為a元;②修1米舊墻的費用為元;③拆去1米舊墻,用所得材料建1米新墻的費用為
元,經過討論有兩種方案: (1)利用舊墻的一段x米(x<14)為矩形廠房一面的邊長;(2)矩形廠房利用舊墻的一面邊長x≥14.問如何利用舊墻,即x為多少米時,建墻費用最省?(1)、(2)兩種方案哪個更好?
(本小題滿分12分)
已知a,b是正常數, a≠b, x,y(0,+∞).
(1)求證:≥
,并指出等號成立的條件;w.w.w.k.s.5.u.c.o.m
(2)利用(1)的結論求函數的最小值,并指出取最小值時相應的x 的值.
(本小題滿分12分)
已知a=(1,2), b=(-2,1),x=a+b,y=-ka+
b (k
R).
(1)若t=1,且x∥y,求k的值;
(2)若tR +,x?y=5,求證k≥1.
1-5 DCACC 6-10 ABACA
11.1或-3 12.12 13. 14.15 15.
16.解:因為
所以
故 …………6分
令,則
的單調遞增的正值區間是
,
單調遞減的正值區間是
當時,函數
的單調遞增區間為
當時,函數
的單調遞增區間為
(注:區間為開的不扣分)…………12分
17.(本題滿分12分)
解:(Ⅰ)記“該學生恰好經過4次測試考上大學”的事件為事件A,則……6分
(Ⅱ)記“該生考上大學”的事件為事件B,其對立事件為,則
∴
……12分
18.解:(1)當M為PC的中點時,PC⊥平面MDB.------------------1分
事實上,連BM,DM,取AD的中點N,連NB,NP.
因為,且平面PAD
平面ABCD,所以PN⊥平面ABCD.
在中,
,所以
,又
所以,又
,
平面MDB,
而PD=DC=2,所以,所以
平面MDB------------------6分
(2)易知G在中線BM上,過M作于F,連CF,
因為平面MDB,所以
,
故是二面角G―BD―C的平面角
------------------9分
在中,
,所以
,又
所以,故二面角G―BD―C的大小為
----------------12分
19.21.解:(1)三個函數的最小值依次為,
,
由,得
∴
,
故方程的兩根是
,
.
故,
.
,即
∴ .………………6分
(2)①依題意是方程
的根,
故有,
,
且△,得
.
由……………9分
;得,
,
.
由(1)知,故
,
∴
,
∴
.………………………12分
20.(1)解法一:設,
,
,則
兩式相減,得:
又 ,
,
,
可得
……………………………………(5分)
解法二:設,
,
,,直線
①
,
,又
由條件:
即……………………………………………………………………(5分)
(2)由①及,可知
代入橢圓方程,得
………………………………………………………………………(10分)
又
…………………………………………………(13分)
21.解: (Ⅰ)依題意有,于是
.
所以數列是等差數列.
………………….2分
(Ⅱ)由題意得,即
, (
)
①
所以又有.
② ………4分
由②①得
,
可知都是等差數列.那么得
,
. (
故
…………8分
(Ⅲ)當為奇數時,
,所以
當為偶數時,
所以
作軸,垂足為
則
,要使等腰三角形
為直角三角形,必須且只需
.
當為奇數時,有
,即
.
①
當時,
;當
時,
;當
, ①式無解.
當為偶數時,有
,同理可求得
.
綜上所述,上述等腰三角形中存在直角三角形,此時
的值為
或
或.
……………………..14分
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com