題目列表(包括答案和解析)
π | 2 |
(本題滿分12分) 已知函數(shù).
(Ⅰ) 求f 1(x);
(Ⅱ) 若數(shù)列{an}的首項為a1=1,(nÎN+),求{an}的通項公式an;
(Ⅲ) 設bn=(32n-8),求數(shù)列{bn}的前項和Tn
(本題滿分12分)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線不過第四象限且斜率為3,又坐標原點到切線
的距離為
,若x=
時,y=f(x)有極值.
(1)求a、b、c的值;w.w.w.k.s.5.u.c.o.m
(2)求y=f(x)在[-3,1]上的最大值和最小值.
(本題滿分12分) 已知數(shù)列{an}滿足
(Ⅰ)求數(shù)列的前三項:a1,a2,a3;
(Ⅱ)求證:數(shù)列{}為等差數(shù)列. w.w.w.k.s.5.u.c.o.m
(Ⅲ)求數(shù)列{an}的前n項和Sn.
(本題滿分12分) 已知函數(shù)
(Ⅰ)當的 單調區(qū)間;
1-5 DCACC 6-10 ABACA
11.1或-3 12.12 13. 14.15 15.
16.解:因為
所以
故 …………6分
令,則
的單調遞增的正值區(qū)間是
,
單調遞減的正值區(qū)間是
當時,函數(shù)
的單調遞增區(qū)間為
當時,函數(shù)
的單調遞增區(qū)間為
(注:區(qū)間為開的不扣分)…………12分
17.(本題滿分12分)
解:(Ⅰ)記“該學生恰好經(jīng)過4次測試考上大學”的事件為事件A,則……6分
(Ⅱ)記“該生考上大學”的事件為事件B,其對立事件為,則
∴
……12分
18.解:(1)當M為PC的中點時,PC⊥平面MDB.------------------1分
事實上,連BM,DM,取AD的中點N,連NB,NP.
因為,且平面PAD
平面ABCD,所以PN⊥平面ABCD.
在中,
,所以
,又
所以,又
,
平面MDB,
而PD=DC=2,所以,所以
平面MDB------------------6分
(2)易知G在中線BM上,過M作于F,連CF,
因為平面MDB,所以
,
故是二面角G―BD―C的平面角
------------------9分
在中,
,所以
,又
所以,故二面角G―BD―C的大小為
----------------12分
19.21.解:(1)三個函數(shù)的最小值依次為,
,
由,得
∴
,
故方程的兩根是
,
.
故,
.
,即
∴ .………………6分
(2)①依題意是方程
的根,
故有,
,
且△,得
.
由……………9分
;得,
,
.
由(1)知,故
,
∴
,
∴
.………………………12分
20.(1)解法一:設,
,
,則
兩式相減,得:
又 ,
,
,
可得
……………………………………(5分)
解法二:設,
,
,,直線
①
,
,又
由條件:
即……………………………………………………………………(5分)
(2)由①及,可知
代入橢圓方程,得
………………………………………………………………………(10分)
又
…………………………………………………(13分)
21.解: (Ⅰ)依題意有,于是
.
所以數(shù)列是等差數(shù)列.
………………….2分
(Ⅱ)由題意得,即
, (
)
①
所以又有.
② ………4分
由②①得
,
可知都是等差數(shù)列.那么得
,
. (
故
…………8分
(Ⅲ)當為奇數(shù)時,
,所以
當為偶數(shù)時,
所以
作軸,垂足為
則
,要使等腰三角形
為直角三角形,必須且只需
.
當為奇數(shù)時,有
,即
.
①
當時,
;當
時,
;當
, ①式無解.
當為偶數(shù)時,有
,同理可求得
.
綜上所述,上述等腰三角形中存在直角三角形,此時
的值為
或
或.
……………………..14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com