日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

運用向量的坐標表示.使向量的運算完全代數化.將數與形有機的結合. 同步練習 5.2平面向量的坐標表示 [選擇題] 查看更多

 

題目列表(包括答案和解析)

函數概念的發展歷程

  17世紀,科學家們致力于運動的研究,如計算天體的位置,遠距離航海中對經度和緯度的測量,炮彈的速度對于高度和射程的影響等.諸如此類的問題都需要探究兩個變量之間的關系,并根據這種關系對事物的變化規律作出判斷,如根據炮彈的速度推測它能達到的高度和射程.這正是函數產生和發展的背景.

  “function”一詞最初由德國數學家萊布尼茲(G.W.Leibniz,1646~1716)在1692年使用.在中國,清代數學家李善蘭(1811~1882)在1859年和英國傳教士偉烈亞力合譯的《代徽積拾級》中首次將“function”譯做“函數”.

  萊布尼茲用“函數”表示隨曲線的變化而改變的幾何量,如坐標、切線等.1718年,他的學生,瑞士數學家約翰·伯努利(J.Bernoulli,1667~1748)強調函數要用公式表示.后來,數學家認為這不是判斷函數的標準.只要一些變量變化,另一些變量隨之變化就可以了.所以,1755年,瑞士數學家歐拉(L.Euler,1707~1783)將函數定義為“如果某些變量,以一種方式依賴于另一些變量,我們將前面的變量稱為后面變量的函數”.

  當時很多數學家對于不用公式表示函數很不習慣,甚至抱懷疑態度.函數的概念仍然是比較模糊的.

  隨著對微積分研究的深入,18世紀末19世紀初,人們對函數的認識向前推進了.德國數學家狄利克雷(P.G.L.Dirichlet,1805~1859)在1837年時提出:“如果對于x的每一個值,y總有一個完全確定的值與之對應,則y是x的函數”.這個定義較清楚地說明了函數的內涵.只要有一個法則,使得取值范圍中的每一個值,有一個確定的y和它對應就行了,不管這個法則是公式、圖象、表格還是其他形式.19世紀70年代以后,隨著集合概念的出現,函數概念又進而用更加嚴謹的集合和對應語言表述,這就是本節學習的函數概念.

  綜上所述可知,函數概念的發展與生產、生活以及科學技術的實際需要緊密相關,而且隨著研究的深入,函數概念不斷得到嚴謹化、精確化的表達,這與我們學習函數的過程是一樣的.

你能以函數概念的發展為背景,談談從初中到高中學習函數概念的體會嗎?

1.探尋科學家發現問題的過程,對指導我們的學習有什么現實意義?

2.萊布尼茲、狄利克雷等科學家有哪些品質值得我們學習?

查看答案和解析>>

出于應用方便和數學交流的需要,我們教材定義向量的坐標如下:取數學公式數學公式為直角坐標第xOy中與x軸和y軸正方向相同的單位向量,根據平面向量基本定理,對于該平面上的任意一個向量數學公式,則存在唯一的一對實數λ,μ,使得數學公式=數學公式數學公式,我們就把實數對(λ,μ)稱作向量數學公式的坐標.并依據這樣的定義研究了向量加法、減法、數乘向量及數量積的坐標運算公式.現在我們用數學公式數學公式表示斜坐標系x‘Oy’中與x‘軸和y軸正方向相同的單位向量,其中<數學公式數學公式>=數學公式
(1)請你模仿直角坐標系xOy中向量坐標的定義方式,用向量數學公式數學公式做基底向量定義斜坐標系x‘Oy’平面上的任意一個向量數學公式的坐標;
(2)在(1)的基礎上研究斜坐標系x‘Oy’中向量的加法、減法、數乘向量及數量積的坐標運算公式.

查看答案和解析>>

出于應用方便和數學交流的需要,我們教材定義向量的坐標如下:取為直角坐標第xOy中與x軸和y軸正方向相同的單位向量,根據平面向量基本定理,對于該平面上的任意一個向量,則存在唯一的一對實數λ,μ,使得=,我們就把實數對(λ,μ)稱作向量的坐標.并依據這樣的定義研究了向量加法、減法、數乘向量及數量積的坐標運算公式.現在我們用表示斜坐標系x‘Oy’中與x‘軸和y軸正方向相同的單位向量,其中<>=
(1)請你模仿直角坐標系xOy中向量坐標的定義方式,用向量做基底向量定義斜坐標系x‘Oy’平面上的任意一個向量的坐標;
(2)在(1)的基礎上研究斜坐標系x‘Oy’中向量的加法、減法、數乘向量及數量積的坐標運算公式.

查看答案和解析>>

出于應用方便和數學交流的需要,我們教材定義向量的坐標如下:取
e1
e2
為直角坐標第xOy中與x軸和y軸正方向相同的單位向量,根據平面向量基本定理,對于該平面上的任意一個向量
a
,則存在唯一的一對實數λ,μ,使得
a
=λ
e1
e2
,我們就把實數對(λ,μ)稱作向量
a
的坐標.并依據這樣的定義研究了向量加法、減法、數乘向量及數量積的坐標運算公式.現在我們用
i
j
表示斜坐標系x‘Oy’中與x‘軸和y軸正方向相同的單位向量,其中<
i
j
>=
π
3

(1)請你模仿直角坐標系xOy中向量坐標的定義方式,用向量
i
j
做基底向量定義斜坐標系x‘Oy’平面上的任意一個向量
a
的坐標;
(2)在(1)的基礎上研究斜坐標系x‘Oy’中向量的加法、減法、數乘向量及數量積的坐標運算公式.

查看答案和解析>>

出于應用方便和數學交流的需要,我們教材定義向量的坐標如下:取
e1
e2
為直角坐標第xOy中與x軸和y軸正方向相同的單位向量,根據平面向量基本定理,對于該平面上的任意一個向量
a
,則存在唯一的一對實數λ,μ,使得
a
=λ
e1
e2
,我們就把實數對(λ,μ)稱作向量
a
的坐標.并依據這樣的定義研究了向量加法、減法、數乘向量及數量積的坐標運算公式.現在我們用
i
j
表示斜坐標系x‘Oy’中與x‘軸和y軸正方向相同的單位向量,其中<
i
j
>=
π
3

(1)請你模仿直角坐標系xOy中向量坐標的定義方式,用向量
i
j
做基底向量定義斜坐標系x‘Oy’平面上的任意一個向量
a
的坐標;
(2)在(1)的基礎上研究斜坐標系x‘Oy’中向量的加法、減法、數乘向量及數量積的坐標運算公式.

查看答案和解析>>


同步練習冊答案
主站蜘蛛池模板: 叶山小百合av一区二区 | 网站黄免费 | 国产精品亚洲精品久久 | 国产日韩精品在线观看 | 国产黄色在线播放 | 欧美日韩导航 | 日韩精品极品在线观看 | 欧美日韩三级 | 欧美精品一区在线发布 | 亚洲高清不卡视频 | 亚洲一区亚洲二区 | 国产精品久久久久久久久久久久久久 | 日韩在线免费视频 | 久久国产精品免费视频 | 国产一级视频在线观看 | 国产激情视频 | 91成人一区 | 亚洲毛片在线 | 国产中文字幕在线 | 天堂av中文在线 | 国产成人精品综合 | 91精品国产777在线观看 | 国产精品视频免费 | 国产在线一级视频 | 日本国产一区二区三区 | 欧美精品久久久久久久久久丰满 | 超碰一区二区三区 | 中文在线一区 | 一区二区三区免费av | 一区二区不卡视频 | 99re久久| 黄色影视在线观看 | 狠狠操天天操 | 欧美在线视频网站 | 成人激情视频在线免费观看 | 在线中文| 久久在线播放 | 欧美精品区 | 视频在线亚洲 | 欧美一级视频 | 精产国产伦理一二三区 |