題目列表(包括答案和解析)
已知 求證:
【解析】本試題組要是利用均值不等式配湊法,來證明關(guān)于不等式的證明問題。也可以運(yùn)用分析法得到。
已知函數(shù)的最小值為0,其中
(Ⅰ)求的值;
(Ⅱ)若對任意的有
≤
成立,求實(shí)數(shù)
的最小值;
(Ⅲ)證明(
).
【解析】(1)解:
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">
由,得
當(dāng)x變化時,,
的變化情況如下表:
x |
|
|
|
|
- |
0 |
+ |
|
|
極小值 |
|
因此,在
處取得最小值,故由題意
,所以
(2)解:當(dāng)時,取
,有
,故
時不合題意.當(dāng)
時,令
,即
令,得
①當(dāng)時,
,
在
上恒成立。因此
在
上單調(diào)遞減.從而對于任意的
,總有
,即
在
上恒成立,故
符合題意.
②當(dāng)時,
,對于
,
,故
在
上單調(diào)遞增.因此當(dāng)取
時,
,即
不成立.
故不合題意.
綜上,k的最小值為.
(3)證明:當(dāng)n=1時,不等式左邊==右邊,所以不等式成立.
當(dāng)時,
在(2)中取,得
,
從而
所以有
綜上,,
已知橢圓(a>b>0),點(diǎn)
在橢圓上。
(I)求橢圓的離心率。
(II)設(shè)A為橢圓的右頂點(diǎn),O為坐標(biāo)原點(diǎn),若Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值。
【考點(diǎn)定位】本小題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程、平面內(nèi)兩點(diǎn)間距離公式等基礎(chǔ)知識. 考查用代數(shù)方法研究圓錐曲線的性質(zhì),以及數(shù)形結(jié)合的數(shù)學(xué)思想方法.考查運(yùn)算求解能力、綜合分析和解決問題的能力.
已知是公差為d的等差數(shù)列,
是公比為q的等比數(shù)列
(Ⅰ)若 ,是否存在
,有
?請說明理由;
(Ⅱ)若(a、q為常數(shù),且aq
0)對任意m存在k,有
,試求a、q滿足的充要條件;
(Ⅲ)若試確定所有的p,使數(shù)列
中存在某個連續(xù)p項(xiàng)的和式數(shù)列中
的一項(xiàng),請證明.
【解析】第一問中,由得
,整理后,可得
、
,
為整數(shù)
不存在
、
,使等式成立。
(2)中當(dāng)時,則
即
,其中
是大于等于
的整數(shù)
反之當(dāng)時,其中
是大于等于
的整數(shù),則
,
顯然,其中
、
滿足的充要條件是
,其中
是大于等于
的整數(shù)
(3)中設(shè)當(dāng)
為偶數(shù)時,
式左邊為偶數(shù),右邊為奇數(shù),
當(dāng)為偶數(shù)時,
式不成立。由
式得
,整理
當(dāng)時,符合題意。當(dāng)
,
為奇數(shù)時,
結(jié)合二項(xiàng)式定理得到結(jié)論。
解(1)由得
,整理后,可得
、
,
為整數(shù)
不存在
、
,使等式成立。
(2)當(dāng)時,則
即
,其中
是大于等于
的整數(shù)反之當(dāng)
時,其中
是大于等于
的整數(shù),則
,
顯然,其中
、
滿足的充要條件是
,其中
是大于等于
的整數(shù)
(3)設(shè)當(dāng)
為偶數(shù)時,
式左邊為偶數(shù),右邊為奇數(shù),
當(dāng)為偶數(shù)時,
式不成立。由
式得
,整理
當(dāng)時,符合題意。當(dāng)
,
為奇數(shù)時,
由
,得
當(dāng)
為奇數(shù)時,此時,一定有
和
使上式一定成立。
當(dāng)
為奇數(shù)時,命題都成立
已知函數(shù)的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)
處的切線的斜率是
.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)求在區(qū)間
上的最大值;
(Ⅲ)對任意給定的正實(shí)數(shù),曲線
上是否存在兩點(diǎn)P、Q,使得
是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在
軸上?說明理由.
【解析】第一問當(dāng)時,
,則
。
依題意得:,即
解得
第二問當(dāng)時,
,令
得
,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值
第三問假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在
軸兩側(cè)。
不妨設(shè),則
,顯然
∵是以O(shè)為直角頂點(diǎn)的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.
(Ⅰ)當(dāng)時,
,則
。
依題意得:,即
解得
(Ⅱ)由(Ⅰ)知,
①當(dāng)時,
,令
得
當(dāng)變化時,
的變化情況如下表:
|
|
0 |
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
極小值 |
單調(diào)遞增 |
極大值 |
|
又,
,
。∴
在
上的最大值為2.
②當(dāng)時,
.當(dāng)
時,
,
最大值為0;
當(dāng)時,
在
上單調(diào)遞增!
在
最大值為
。
綜上,當(dāng)時,即
時,
在區(qū)間
上的最大值為2;
當(dāng)時,即
時,
在區(qū)間
上的最大值為
。
(Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在
軸兩側(cè)。
不妨設(shè),則
,顯然
∵是以O(shè)為直角頂點(diǎn)的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.
若,則
代入(*)式得:
即,而此方程無解,因此
。此時
,
代入(*)式得: 即
(**)
令
,則
∴在
上單調(diào)遞增, ∵
∴
,∴
的取值范圍是
。
∴對于,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實(shí)數(shù),曲線
上存在兩點(diǎn)P、Q,使得
是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在
軸上
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com