題目列表(包括答案和解析)
已知函數
(I) 討論f(x)的單調性;
(II) 設f(x)有兩個極值點若過兩點
的直線I與x軸的交點在曲線
上,求α的值。
【解析】本試題考查了導數在研究函數中的運用。第一就是三次函數,通過求解導數,求解單調區間。另外就是運用極值的概念,求解參數值的運用。
【點評】試題分為兩問,題面比較簡單,給出的函數比較常規,,這一點對于同學們來說沒有難度但是解決的關鍵還是要看導數的符號的實質不變,求解單調區間。第二問中,運用極值的問題,和直線方程的知識求解交點,得到參數的值。
(1)
已知函數,(
),
(1)若曲線與曲線
在它們的交點(1,c)處具有公共切線,求a,b的值
(2)當時,若函數
在區間[k,2]上的最大值為28,求k的取值范圍
【解析】(1),
∵曲線與曲線
在它們的交點(1,c)處具有公共切線
∴,
∴
(2)當時,
,
,
令,則
,令
,
∴
為單調遞增區間,
為單調遞減區間,其中F(-3)=28為極大值,所以如果區間[k,2]最大值為28,即區間包含極大值點
,所以
【考點定位】此題應該說是導數題目中較為常規的類型題目,考查的切線,單調性,極值以及最值問題都是課本中要求的重點內容,也是學生掌握比較好的知識點,在題目中能夠發現F(-3)=28,和分析出區間[k,2]包含極大值點,比較重要
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com