日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

(16)定義在上的函數.若對任意不等實數滿足.且對于任意的.不等式成立.又函數的圖象關于點對稱.則當 時.的取值范圍為 . 查看更多

 

題目列表(包括答案和解析)

定義在上的函數對任意都有為常數).

(1)判斷為何值時為奇函數,并證明;

(2)設上的增函數,且,若不等式對任意恒成立,求實數的取值范圍.

 

查看答案和解析>>

定義在上的函數對任意都有為常數).
(1)判斷為何值時為奇函數,并證明;
(2)設上的增函數,且,若不等式對任意恒成立,求實數的取值范圍.

查看答案和解析>>

定義在上的函數對任意都有為常數).
(1)判斷為何值時為奇函數,并證明;
(2)設上的增函數,且,若不等式對任意恒成立,求實數的取值范圍.

查看答案和解析>>

若定義在上的函數滿足條件:存在實數,使得:

⑴ 任取,有是常數);

⑵ 對于內任意,當,總有

我們將滿足上述兩條件的函數稱為“平頂型”函數,稱為“平頂高度”,稱為“平頂寬度”。根據上述定義,解決下列問題:

(1)函數是否為“平頂型”函數?若是,求出“平頂高度”和“平頂寬度”;若不是,簡要說明理由。

(2) 已知是“平頂型”函數,求出 的值。

(3)對于(2)中的函數,若上有兩個不相等的根,求實數的取值范圍。

 

查看答案和解析>>

若定義在上的函數滿足條件:存在實數,使得:
⑴ 任取,有是常數);
⑵ 對于內任意,當,總有
我們將滿足上述兩條件的函數稱為“平頂型”函數,稱為“平頂高度”,稱為“平頂寬度”。根據上述定義,解決下列問題:
(1)函數是否為“平頂型”函數?若是,求出“平頂高度”和“平頂寬度”;若不是,簡要說明理由。
(2) 已知是“平頂型”函數,求出 的值。
(3)對于(2)中的函數,若上有兩個不相等的根,求實數的取值范圍。

查看答案和解析>>

一、選擇題

1、B(A)   2、C        3、A(C)       4、D         5、D          6、C(D)  

7、B         8、B        9、C          10、B        11、B        12、A(C)

二、填空題

13、6          14、           15、31           16、

三、解答題

17、解:⑴由

       由 

        

       ∴函數的最小正周期T= …………………6分

       ⑵由

       ∴fx)的單調遞減區間是

       ⑶,∴奇函數的圖象左移 即得到的圖象,

故函數的圖象右移后對應的函數成為奇函數.…………………12分

18、(文)解:(1),又. ∴.

(2)至少需要3秒鐘可同時到達點.

到達點的概率. 到達點的概率.

     故所求的概率.

(理)解:(Ⅰ)的概率分布為

1.2

1.18

1.17

由題設得,即的概率分布為

0

1

2

的概率分布為

1.3

1.25

0.2

所以的數學期望

(Ⅱ)由

,∴

 

19、解:(1)取中點,連結,∵的中點,的中點.

  所以,所以………………………… 2分

平面,所以平面………………………………………… 4分

(2)分別在兩底面內作,連結,易得,以為原點,軸,軸,軸建立直角坐標系,

,則……………………………………………………… 5分

  .

易求平面的法向量為…………………………………………… 7分

設平面的法向量為

,由…………… 9分

  ∴…………… 11分

由題知 ∴

所以在上存在點,當是直二面角.…………… 12分

20、解:(1)由,得,兩式相減,得,∴,∵是常數,且,故

為不為0的常數,∴是等比數列.

(2)由,且時,,得

,∴是以1為首項,為公差的等差數列,

,故.

(3)由已知,∴

相減得:,∴

遞增,∴均成立,∴∴,又,∴最大值為7.

21、(文)解:(Ⅰ)因為

                      

             又  

             因此    

             解方程組得 

         (Ⅱ)因為     

             所以     

             令      

             因為    

                     

             所以     在(-2,0)和(1,+)上是單調遞增的;

                           在(-,-2)和(0,1)上是單調遞減的.

         (Ⅲ)由(Ⅰ)可知         

            

 

(理)(1)證:令,令

            時,.  ∴

             ∴ 即.

  (2)∵是R上的奇函數  ∴  ∴

       ∴  ∴  故.

       故討論方程的根的個數.

       即的根的個數.

       令.注意,方程根的個數即交點個數.

        對, ,

        令, 得

         當時,; 當時,.  ∴

         當時,;   當時,, 但此時

,此時以軸為漸近線。

       ①當時,方程無根;

②當時,方程只有一個根.

③當時,方程有兩個根.

 (3)由(1)知,   令,

      ∴,于是,

      ∴

         .

22、(文)22.解:(1)在中,

.  (小于的常數)

故動點的軌跡是以為焦點,實軸長的雙曲線.方程為

(2)方法一:在中,設

假設為等腰直角三角形,則

由②與③得:

由⑤得:

故存在滿足題設條件.

方法二:(1)設為等腰直角三角形,依題設可得:

所以

.①

,可設

.②

由①②得.③

根據雙曲線定義可得,

平方得:.④

由③④消去可解得,

故存在滿足題設條件.

 

 

 

 

(理)解:(1) 

    于是,所求“果圓”方程為

    .                    

(2)由題意,得  ,即

         ,得.  

     又.  .                                             

(3)設“果圓”的方程為

    記平行弦的斜率為

時,直線與半橢圓的交點是

,與半橢圓的交點是

 的中點滿足  得 .  

      

    綜上所述,當時,“果圓”平行弦的中點軌跡總是落在某個橢圓上. 

    當時,以為斜率過的直線與半橢圓的交點是.  

由此,在直線右側,以為斜率的平行弦的中點軌跡在直線上,即不在某一橢圓上.   當時,可類似討論得到平行弦中點軌跡不都在某一橢圓上.

 


同步練習冊答案
主站蜘蛛池模板: 香蕉黄色一级片 | 日本午夜一区二区 | 嫩草影院网站入口 | 天天色天天色 | 天堂在线视频免费 | 久久久久久网站 | av一级毛片 | 十八岁禁看网站 | 久久久久久91香蕉国产 | 一区二区三区四区精品 | 久久成人国产 | 日本在线看| 91精品久久久久久久久久入口 | 亚洲88| 日本不卡免费新一二三区 | 三级欧美在线观看 | 成视频年人免费看黄网站 | 日本一区二区在线 | 欧美亚洲伦理 | 精品国产一区二区三区久久影院 | 黄色毛片视频在线观看 | 国产精品久久久久久久久久 | 国产伦精品一区二区三区四区视频 | 国产一区二区高潮 | 毛片免费在线观看 | 免费观看av毛片 | 中文字幕一区二区三区不卡 | 97人人爽人人澡人人精品 | 久久久999精品视频 成人激情在线 | www一起操| 成人免费视频视频在线观看 免费 | 操操操av | 欧美黑人一级爽快片淫片高清 | 一区三区视频 | 91久久| 亚洲国产精品久久久久 | 欧美日韩大片在线观看 | 成人区一区二区三区 | 欧美亚洲视频 | 久久黄网站 | 国产精品日产欧美久久久久 |