題目列表(包括答案和解析)
已知.
(1)求的單調區間;
(2)證明:當時,
恒成立;
(3)任取兩個不相等的正數,且
,若存在
使
成立,證明:
.
【解析】(1)g(x)=lnx+,
=
(1’)
當k0時,
>0,所以函數g(x)的增區間為(0,+
),無減區間;
當k>0時,>0,得x>k;
<0,得0<x<k∴增區間(k,+
)減區間為(0,k)(3’)
(2)設h(x)=xlnx-2x+e(x1)令
= lnx-1=0得x=e, 當x變化時,h(x),
的變化情況如表
x |
1 |
(1,e) |
e |
(e,+ |
|
|
- |
0 |
+ |
h(x) |
e-2 |
|
0 |
↗ |
所以h(x)0, ∴f(x)
2x-e
(5’)
設G(x)=lnx-(x
1)
=
=
0,當且僅當x=1時,
=0所以G(x) 為減函數, 所以G(x)
G(1)=0, 所以lnx-
0所以xlnx
(x
1)成立,所以f(x)
,綜上,當x
1時, 2x-e
f(x)
恒成立.
(3) ∵=lnx+1∴lnx0+1=
=
∴lnx0=
-1
∴lnx0 –lnx
=
-1–lnx
=
=
=
(10’) 設H(t)=lnt+1-t(0<t<1),
=
=
>0(0<t<1), 所以H(t) 在(0,1)上是增函數,并且H(t)在t=1處有意義, 所以H(t)
<H(1)=0∵
∴
=
∴lnx0 –lnx>0, ∴x0 >x
設函數.
(I)求的單調區間;
(II)當0<a<2時,求函數在區間
上的最小值.
【解析】第一問定義域為真數大于零,得到.
.
令,則
,所以
或
,得到結論。
第二問中, (
).
.
因為0<a<2,所以,
.令
可得
.
對參數討論的得到最值。
所以函數在
上為減函數,在
上為增函數.
(I)定義域為. ………………………1分
.
令,則
,所以
或
. ……………………3分
因為定義域為,所以
.
令,則
,所以
.
因為定義域為,所以
. ………………………5分
所以函數的單調遞增區間為,
單調遞減區間為.
………………………7分
(II) (
).
.
因為0<a<2,所以,
.令
可得
.…………9分
所以函數在
上為減函數,在
上為增函數.
①當,即
時,
在區間上,
在
上為減函數,在
上為增函數.
所以. ………………………10分
②當,即
時,
在區間
上為減函數.
所以.
綜上所述,當時,
;
當時,
已知函數.(
)
(1)若在區間
上單調遞增,求實數
的取值范圍;
(2)若在區間上,函數
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問中,首先利用在區間
上單調遞增,則
在區間
上恒成立,然后分離參數法得到
,進而得到范圍;第二問中,在區間
上,函數
的圖象恒在曲線
下方等價于
在區間
上恒成立.然后求解得到。
解:(1)在區間
上單調遞增,
則在區間
上恒成立. …………3分
即,而當
時,
,故
.
…………5分
所以.
…………6分
(2)令,定義域為
.
在區間上,函數
的圖象恒在曲線
下方等價于
在區間
上恒成立.
∵ …………9分
① 若,令
,得極值點
,
,
當,即
時,在(
,+∞)上有
,此時
在區間
上是增函數,并且在該區間上有
,不合題意;
當,即
時,同理可知,
在區間
上遞增,
有,也不合題意;
…………11分
② 若,則有
,此時在區間
上恒有
,從而
在區間
上是減函數;
要使在此區間上恒成立,只須滿足
,
由此求得的范圍是
. …………13分
綜合①②可知,當時,函數
的圖象恒在直線
下方.
已知M、N兩點的坐標分別是是常數
,令
是坐標原點
.
(Ⅰ)求函數的解析式,并求函數
在
上的單調遞增區間;
(Ⅱ)當時,
的最大值為
,求a的值,并說明此時
的圖象可由函數
的圖象經過怎樣的平移和伸縮變換而得到?
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com