題目列表(包括答案和解析)
在中,
是三角形的三內角,
是三內角對應的三邊,已知
成等差數(shù)列,
成等比數(shù)列
(Ⅰ)求角的大小;
(Ⅱ)若,求
的值.
【解析】第一問中利用依題意且
,故
第二問中,由題意又由余弦定理知
,得到,所以
,從而得到結論。
(1)依題意且
,故
……………………6分
(2)由題意又由余弦定理知
…………………………9分
即 故
代入
得
如圖,已知直線(
)與拋物線
:
和圓
:
都相切,
是
的焦點.
(Ⅰ)求與
的值;
(Ⅱ)設是
上的一動點,以
為切點作拋物線
的切線
,直線
交
軸于點
,以
、
為鄰邊作平行四邊形
,證明:點
在一條定直線上;
(Ⅲ)在(Ⅱ)的條件下,記點所在的定直線為
, 直線
與
軸交點為
,連接
交拋物線
于
、
兩點,求△
的面積
的取值范圍.
【解析】第一問中利用圓:
的圓心為
,半徑
.由題設圓心到直線
的距離
.
即,解得
(
舍去)
設與拋物線的相切點為
,又
,得
,
.
代入直線方程得:,∴
所以
,
第二問中,由(Ⅰ)知拋物線方程為
,焦點
. ………………(2分)
設,由(Ⅰ)知以
為切點的切線
的方程為
.
令,得切線
交
軸的
點坐標為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形
∴ 因為
是定點,所以點
在定直線
第三問中,設直線,代入
得
結合韋達定理得到。
解:(Ⅰ)由已知,圓:
的圓心為
,半徑
.由題設圓心到直線
的距離
.
即,解得
(
舍去). …………………(2分)
設與拋物線的相切點為
,又
,得
,
.
代入直線方程得:,∴
所以
,
.
……(2分)
(Ⅱ)由(Ⅰ)知拋物線方程為
,焦點
. ………………(2分)
設,由(Ⅰ)知以
為切點的切線
的方程為
.
令,得切線
交
軸的
點坐標為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,
∴ 因為
是定點,所以點
在定直線
上.…(2分)
(Ⅲ)設直線,代入
得
, ……)得
,
…………………………… (2分)
,
.
△
的面積
范圍是
已知二次函數(shù)的二次項系數(shù)為
,且不等式
的解集為
,
(1)若方程有兩個相等的根,求
的解析式;
(2)若的最大值為正數(shù),求
的取值范圍.
【解析】第一問中利用∵f(x)+2x>0的解集為(1,3),
設出二次函數(shù)的解析式,然后利用判別式得到a的值。
第二問中,
解:(1)∵f(x)+2x>0的解集為(1,3),
①
由方程
②
∵方程②有兩個相等的根,
∴,
即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5
a=-1/5代入①得:
(2)由
由 解得:
故當f(x)的最大值為正數(shù)時,實數(shù)a的取值范圍是
在△ABC中,角A、B、C的對邊分別為a、b、c,向量=(sinA,b+c),
=(a-c,sinC-sinB),滿足
=
(Ⅰ)求角B的大小;
(Ⅱ)設=(sin(C+
),
),
=(2k,cos2A) (k>1),
有最大值為3,求k的值.
【解析】本試題主要考查了向量的數(shù)量積和三角函數(shù),以及解三角形的綜合運用
第一問中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又
p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,
根據(jù)正弦定理,可化為a(a-c)+(b+c)(c-b)=0,
即,又由余弦定理
=2acosB,所以cosB=
,B=
第二問中,m=(sin(C+),
),n=(2k,cos2A) (k>1),m·n=2ksin(C+
)+
cos2A=2ksin(C+B) +
cos2A
=2ksinA+-
=-
+2ksinA+
=-
+
(k>1).
而0<A<,sinA∈(0,1],故當sin=1時,m·n取最大值為2k-
=3,得k=
.
在△中,∠
,∠
,∠
的對邊分別是
,且
.
(1)求∠的大小;(2)若
,
,求
和
的值.
【解析】第一問利用余弦定理得到
第二問
(2) 由條件可得
將 代入 得 bc=2
解得 b=1,c=2 或 b=2,c=1 .
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com