日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

(Ⅰ)求的通項公式和, 查看更多

 

題目列表(包括答案和解析)

數列的通項公式為,等比數列滿足
(1)求數列的通項公式;
(2)求數列的前項和
(3)設,求數列的前項和

查看答案和解析>>

數列的通項公式為,等比數列滿足
(1)求數列的通項公式;
(2)求數列的前項和;
(3)設,求數列的前項和

查看答案和解析>>

數列{an}的通項公式為an=
1
(n+1)2
(n∈N*),設f(n)=(1-a1)(1-a2)(1-a3)…(1-an).
(1)求f(1)、f(2)、f(3)、f(4)的值;
(2)求f(n)的表達式;
(3)數列{bn}滿足b1=1,bn+1=2f(n)-1,它的前n項和為g(n),求證:當n∈N*時,g(2n)-
n
2
≥1.

查看答案和解析>>

已知數列的通項公式和前項和與2的等差中項,數列中,,點在直線上。

       (1)求數列的通項,;

       (2)設的前項和為,比較與2的大小;

       (3)設),求C的最小值

查看答案和解析>>

()(本題14分)

      已知數列的首項,通項,且成等差數列。求:

    (Ⅰ)p,q的值;

(Ⅱ) 數列n項和的公式。

查看答案和解析>>

一、填空題

1.;2.-1;3.48;4.;5.1;6.a;7.

 

8.;9.;10.4;11.160;12.;13.;14.

二、解答題

15.證明:(Ⅰ)

因為平面PBC與平面PAD的交線為

所以

(Ⅱ)在中,由題設可得

于是

在矩形中,.又,

所以平面   又

平面PBC與平面PAD所成二面角的一個平面角 

中  

所以平面PBC與平面PAD所成二面角的大小為

16.解:(Ⅰ)

          ……2分

由題意得,,得,

時,最小正整數的值為2,故.        ……6分

(Ⅱ)因  

  當且僅當,時,等號成立

,又因,則 ,即 ……10分

由①知:

,則  ,

,故函數的值域為.                   ……14分

 

17.解:(Ⅰ)6ec8aac122bd4f6e

6ec8aac122bd4f6e時,g(x)=f(x)-f(x-1)6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

當x=1時,g(x)=g(1)也適合上式

6ec8aac122bd4f6e

6ec8aac122bd4f6e

等號當且僅當x=12-x即x=6時成立,即當x=6時,6ec8aac122bd4f6e(萬件)

∴6月份該商品的需求量最大,最大需求量為6ec8aac122bd4f6e萬件。

(Ⅱ)依題意,對一切6ec8aac122bd4f6e,有

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

答每個月至少投入6ec8aac122bd4f6e萬件可以保證每個月都足量供應。

 

18.解:(Ⅰ)  由(x-12)2+y2=144-a(a<144),可知圓心M的坐標為(12,0),

依題意,∠ABM=∠BAM=,kAB= , 設MA、MB的斜率k.

,  解得=2,=- .

∴所求BD方程為x+2y-12=0,AC方程為2x-y-24=0.

(Ⅱ) 設MB、MA的傾斜角分別為θ1,θ2,則tanθ1=2,tanθ2=-,

設圓半徑為r,則A(12+),B(12-,),

再設拋物線方程為y2=2px (p>0),由于A,B兩點在拋物線上,

∴ ∴ r=4,p=2.

得拋物線方程為y2=4x。

 

19.解:(Ⅰ)設數列的公差為,由

    , ,解得=3

    ∴

    ∵  ∴Sn==

(Ⅱ)  

(Ⅲ)由(2)知,

  ∴,

  ∵成等比數列

 ∴       即

時,7,=1,不合題意;

時,,=16,符合題意;

時,,無正整數解;

時,無正整數解;

時,無正整數解;

時,,無正整數解;

時, ,則,而,所以,此時不存在正整數m,n,且1<m<n,使得成等比數列。

綜上,存在正整數m=2,n=16,且1<m<n,使得成等比數列。

 

20.解:(Ⅰ)假設①,其中偶函數,為奇函數,則有,即②,

由①②解得,.

定義在R上,∴,都定義在R上.

,.

是偶函數,是奇函數,

,

,

.  

,則,

平方得,∴

.                    …………6分

(Ⅱ)∵關于單調遞增,∴.

對于恒成立,

對于恒成立,

,則,

,∴,故上單調遞減,

,∴為m的取值范圍. …………10分

(Ⅲ)由(1)得,

無實根,即①無實根,    

方程①的判別式.

1°當方程①的判別式,即時,

方程①無實根.                            ……………12分

2°當方程①的判別式,即時,

方程①有兩個實根

②,

只要方程②無實根,故其判別式

即得③,且④,

,③恒成立,由④解得,

∴③④同時成立得

綜上,m的取值范圍為.           ……………16分

 

 

 

 

 

 

 

三、附加題

21A.(1)∵DE2=EF?EC,∴DE : CE=EF: ED.

          ∵ÐDEF是公共角,

          ∴ΔDEF∽ΔCED.  ∴ÐEDF=ÐC.

          ∵CD∥AP,    ∴ÐC=Ð P.

          ∴ÐP=ÐEDF.

(2)∵ÐP=ÐEDF,    ÐDEF=ÐPEA,

     ∴ΔDEF∽ΔPEA. ∴DE : PE=EF : EA.即EF?EP=DE?EA.

     ∵弦AD、BC相交于點E,∴DE?EA=CE?EB.∴CE?EB=EF?EP.

21B.解(Ⅰ)由條件得矩陣

它的特征值為,對應的特征向量為;

(Ⅱ),

橢圓的作用下的新曲線的方程為

21C.解:(Ⅰ)x2+y2-4x-4y+6=0;                    

(Ⅱ)x+y=4+2sin()  最大值6,最小值2 . 

21D.證明:

  

當且僅當時,等號成立.

22.解:設既會唱歌又會跳舞的有x人,則文娛隊中共有(7-x)人,那么只會一項的人數是(7-2 x)人.

 (I)∵,

.即

∴x=2.           故文娛隊共有5人.

(II) ,

的概率分布列為

0

1

2

P

=1.

23.解:(Ⅰ);

(Ⅱ)

 

 

 


同步練習冊答案
主站蜘蛛池模板: 成人国产精品视频 | 成人亚洲| 国产精品久久久久久久久免费高清 | 精品一区二区三区久久 | 综合婷婷 | 欧美一区视频 | 日韩一本| 亚洲一区中文字幕 | 国产精品自拍视频网站 | 国产精品国产自产拍高清av | 国产成人精品综合 | 9999国产精品| 中文一二区 | 国产精品成人免费一区二区视频 | 日韩一级免费在线观看 | 久久久久91| eeuss影院一区二区三区 | 美女网站视频免费黄 | 欧美成人一区二区三区片免费 | 欧美综合久久 | 国产美女在线播放 | 国产成人综合av | 欧美成人a∨高清免费观看 久久精品在线 | 日韩欧美在线中文字幕 | 五月婷婷色 | 久在草视频 | 天堂在线一区二区 | 曰本少妇色xxxxx日本妇 | 日韩欧美~中文字幕 | 一区在线视频 | 欧美视频一区 | 99精品99 | www.国产 | 红杏aⅴ成人免费视频 | 综合网在线 | 一区综合| a黄视频 | 国产成人不卡 | 国产精品一区91 | 亚洲久久在线 | 欧美日韩国产一区二区 |