日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

由條件可設....又......設異面直線AC與所成角為. 4分 查看更多

 

題目列表(包括答案和解析)

設定義在(0,+)上的函數

(Ⅰ)求的最小值;

(Ⅱ)若曲線在點處的切線方程為,求的值。

 【解析】 (Ⅰ)因,故,取等號的條件是,即

(Ⅱ)因,由,求得,又由,可得,解得

 

查看答案和解析>>

在△ABC中,角A、B、C的對邊分別為a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),滿足=

(Ⅰ)求角B的大小;

(Ⅱ)設=(sin(C+),), =(2k,cos2A) (k>1),  有最大值為3,求k的值.

【解析】本試題主要考查了向量的數量積和三角函數,以及解三角形的綜合運用

第一問中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又

p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

根據正弦定理,可化為a(a-c)+(b+c)(c-b)=0,

,又由余弦定理=2acosB,所以cosB=,B=

第二問中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

=2ksinA+-=-+2ksinA+=-+ (k>1).

而0<A<,sinA∈(0,1],故當sin=1時,m·n取最大值為2k-=3,得k=.

 

查看答案和解析>>

 

已知函數.

(Ⅰ)討論函數的單調性; 

(Ⅱ)設,證明:對任意.

    1.選修4-1:幾何證明選講

    如圖,的角平分線的延長線交它的外接圓于點

(Ⅰ)證明:∽△;

(Ⅱ)若的面積,求的大小.

證明:(Ⅰ)由已知條件,可得∠BAE=∠CAD.

因為∠AEB與∠ACB是同弧上的圓周角,所以∠AEB=∠ACD.

故△ABE∽△ADC.

(Ⅱ)因為△ABE∽△ADC,所以,即AB·ACAD·AE.

SAB·ACsin∠BAC,且SAD·AE,故AB·ACsin∠BACAD·AE.

則sin∠BAC=1,又∠BAC為三角形內角,所以∠BAC=90°.

 

查看答案和解析>>

如圖所示,圓柱的高為2,底面半徑為,AE、DF是圓柱的兩條母線,過作圓柱的截面交下底面于.

(1)求證:

(2)若四邊形ABCD是正方形,求證

(3)在(2)的條件下,求二面角A-BC-E的平面角的一個三角函數值。

【解析】第一問中,利用由圓柱的性質知:AD平行平面BCFE

又過作圓柱的截面交下底面于. 

又AE、DF是圓柱的兩條母線

∥DF,且AE=DF     AD∥EF

第二問中,由線面垂直得到線線垂直。四邊形ABCD是正方形  又

BC、AE是平面ABE內兩條相交直線

 

第三問中,設正方形ABCD的邊長為x,則在

 

由(2)可知:為二面角A-BC-E的平面角,所以

證明:(1)由圓柱的性質知:AD平行平面BCFE

又過作圓柱的截面交下底面于. 

又AE、DF是圓柱的兩條母線

∥DF,且AE=DF     AD∥EF 

(2) 四邊形ABCD是正方形  又

BC、AE是平面ABE內兩條相交直線

 

(3)設正方形ABCD的邊長為x,則在

 

由(2)可知:為二面角A-BC-E的平面角,所以

 

查看答案和解析>>

設點是拋物線的焦點,是拋物線上的個不同的點().

(1) 當時,試寫出拋物線上的三個定點的坐標,從而使得

(2)當時,若

求證:

(3) 當時,某同學對(2)的逆命題,即:

“若,則.”

開展了研究并發現其為假命題.

請你就此從以下三個研究方向中任選一個開展研究:

① 試構造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);

② 對任意給定的大于3的正整數,試構造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);

③ 如果補充一個條件后能使該逆命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.

【解析】第一問利用拋物線的焦點為,設

分別過作拋物線的準線的垂線,垂足分別為.

由拋物線定義得到

第二問設,分別過作拋物線的準線垂線,垂足分別為.

由拋物線定義得

第三問中①取時,拋物線的焦點為

分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

,不妨取

解:(1)拋物線的焦點為,設

分別過作拋物線的準線的垂線,垂足分別為.由拋物線定義得

 

因為,所以

故可取滿足條件.

(2)設,分別過作拋物線的準線垂線,垂足分別為.

由拋物線定義得

   又因為

所以.

(3) ①取時,拋物線的焦點為

分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

,不妨取

.

是一個當時,該逆命題的一個反例.(反例不唯一)

② 設,分別過

拋物線的準線的垂線,垂足分別為

及拋物線的定義得

,即.

因為上述表達式與點的縱坐標無關,所以只要將這點都取在軸的上方,則它們的縱坐標都大于零,則

,所以.

(說明:本質上只需構造滿足條件且的一組個不同的點,均為反例.)

③ 補充條件1:“點的縱坐標)滿足 ”,即:

“當時,若,且點的縱坐標)滿足,則”.此命題為真.事實上,設

分別過作拋物線準線的垂線,垂足分別為,由

及拋物線的定義得,即,則

又由,所以,故命題為真.

補充條件2:“點與點為偶數,關于軸對稱”,即:

“當時,若,且點與點為偶數,關于軸對稱,則”.此命題為真.(證略)

 

查看答案和解析>>


同步練習冊答案
主站蜘蛛池模板: 五月婷婷之综合激情 | 国产在线不卡 | 欧美亚洲视频 | 天天做天天爱天天操 | 青青草视频免费观看 | 亚洲毛片| 久久99国产精一区二区三区 | 成人免费福利视频 | 亚洲国产精品一区 | 91福利在线播放 | 欧美性猛交一区二区三区精品 | 日本精品视频在线观看 | 久久久久久久久久久一区二区 | 99精品国产高清一区二区麻豆 | 欧美日韩亚洲一区二区 | 国产成人a v | 人人精久 | 国产精品美女高潮无套久久 | 欧洲国产伦久久久久久久 | 亚洲综合婷婷 | 日韩大片免费观看视频播放 | 午夜精品久久久久久久久久久久久 | 日韩欧美一级二级 | 亚洲国产高清高潮精品美女 | 四虎影片 | 在线观看av片 | 亚洲一区中文字幕 | 欧美成人精品一区二区男人看 | 国产麻豆乱码精品一区二区三区 | 成人黄网在线观看 | 午夜激情视频在线观看 | 久久精品99 | 天天久久 | 亚洲精品美女在线观看 | 日韩中文字幕视频在线观看 | 99精品欧美一区二区三区综合在线 | 中文字幕一区二区三区乱码在线 | 国产区视频 | www.亚洲精品 | 国产日韩欧美在线观看 | 免费观看一级黄色片 |