題目列表(包括答案和解析)
本小題滿分12分)
如圖,已知橢圓C1的中心在原點O,長軸左、右端點M,N在x軸上,橢圓C2的短軸為MN,且C1,C2的離心率都為e,直線l⊥MN,l與C1交于兩點,與C2交于兩點,這四點按縱坐標從大到小依次為A,B,C,D.
(I)設,求
與
的比值;
(II)當e變化時,是否存在直線l,使得BO∥AN,并說明理由
(本小題滿分12分)
如圖,已知橢圓C1的中心在圓點O,長軸左、右端點M、N在x軸上,橢圓C1的短軸為MN,且C1,C2的離心率都為e,直線l⊥MN,l與C1交于兩點,與C1交于兩點,這四點按縱坐標從大到小依次為A、B、C、D.
(I)設e=,求|BC|與|AD|的比值;
(II)當e變化時,是否存在直線l,使得BO//AN,并說明理由.
(本小題滿分12分)
如圖,已知橢圓C1的中心在圓點O,長軸左、右端點M、N在x軸上,橢圓C1的短軸為MN,且C1,C2的離心率都為e,直線l⊥MN,l與C1交于兩點,與C1交于兩點,這四點按縱坐標從大到小依次為A、B、C、D.
(I)設e=,求|BC|與|AD|的比值;
(II)當e變化時,是否存在直線l,使得BO//AN,并說明理由.
(本小題滿分12分)
已知向量 a = (cos x,sin x),b = (-cos x,cos x),c = (-1,0)
(I) 若 x = ,求向量 a、c 的夾角;
(II) 當 x∈[,] 時,求函數 f (x) = 2a·b + 1 的最大值。
(本小題滿分12分)
已知向量 a = (cos x,sin x),b = (-cos x,cos x),c = (-1,0)
(I) 若 x = ,求向量 a、c 的夾角;
(II) 當 x∈[,] 時,求函數 f (x) = 2a·b + 1 的最大值。
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com