題目列表(包括答案和解析)
函數是定義在
上的奇函數,且
。
(1)求實數a,b,并確定函數的解析式;
(2)判斷在(-1,1)上的單調性,并用定義證明你的結論;
(3)寫出的單調減區間,并判斷
有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)
【解析】本試題主要考查了函數的解析式和奇偶性和單調性的綜合運用。第一問中,利用函數是定義在
上的奇函數,且
。
解得,
(2)中,利用單調性的定義,作差變形判定可得單調遞增函數。
(3)中,由2知,單調減區間為,并由此得到當,x=-1時,
,當x=1時,
解:(1)是奇函數,
。
即,
,
………………2分
,又
,
,
,
(2)任取,且
,
,………………6分
,
,
,
,
,
在(-1,1)上是增函數。…………………………………………8分
(3)單調減區間為…………………………………………10分
當,x=-1時,,當x=1時,
。
已知函數。
(1)求函數的最小正周期和最大值;
(2)求函數的增區間;
(3)函數的圖象可以由函數的圖象經過怎樣的變換得到?
【解析】本試題考查了三角函數的圖像與性質的運用。第一問中,利用可知函數的周期為
,最大值為
。
第二問中,函數的單調區間與函數
的單調區間相同。故當
,解得x的范圍即為所求的區間。
第三問中,利用圖像將的圖象先向右平移
個單位長度,再把橫坐標縮短為原來的
(縱坐標不變),然后把縱坐標伸長為原來的
倍(橫坐標不變),再向上平移1個單位即可。
解:(1)函數的最小正周期為
,最大值為
。
(2)函數的單調區間與函數
的單調區間相同。
即
所求的增區間為
,
即
所求的減區間為
,
。
(3)將的圖象先向右平移
個單位長度,再把橫坐標縮短為原來的
(縱坐標不變),然后把縱坐標伸長為原來的
倍(橫坐標不變),再向上平移1個單位即可。
已知函數f(x)=,
為常數。
(I)當=1時,求f(x)的單調區間;
(II)若函數f(x)在區間[1,2]上為單調函數,求的取值范圍。
【解析】本試題主要考查了導數在研究函數中的運用。第一問中,利用當a=1時,f(x)=,則f(x)的定義域是
然后求導,
,得到由
,得0<x<1;由
,得x>1;得到單調區間。第二問函數f(x)在區間[1,2]上為單調函數,則
或
在區間[1,2]上恒成立,即即
,或
在區間[1,2]上恒成立,解得a的范圍。
(1)當a=1時,f(x)=,則f(x)的定義域是
。
由,得0<x<1;由
,得x>1;
∴f(x)在(0,1)上是增函數,在(1,上是減函數。……………6分
(2)。若函數f(x)在區間[1,2]上為單調函數,
則或
在區間[1,2]上恒成立。∴
,或
在區間[1,2]上恒成立。即
,或
在區間[1,2]上恒成立。
又h(x)=在區間[1,2]上是增函數。h(x)max=(2)=
,h(x)min=h(1)=3
即,或
。 ∴
,或
。
已知函數f(x)=sin(ωx+φ)
(0<φ<π,ω>0)過點
,函數y=f(x)圖象的兩相鄰對稱軸間的距離為
.
(1) 求f(x)的解析式;
(2) f(x)的圖象向右平移個單位后,得到函數y=g(x)的圖象,求函數g(x)的單調遞減區間.
【解析】本試題主要考查了三角函數的圖像和性質的運用,第一問中利用函數y=f(x)圖象的兩相鄰對稱軸間的距離為.得
,
所以
第二問中,,
可以得到單調區間。
解:(Ⅰ)由題意得,
,…………………1分
代入點
,得
…………1分
,
∴
(Ⅱ),
的單調遞減區間為
,
.
已知函數f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令
.
當時
單調遞減;當
時
單調遞增,故當
時,
取最小值
于是對一切恒成立,當且僅當
. ①
令則
當時,
單調遞增;當
時,
單調遞減.
故當時,
取最大值
.因此,當且僅當
時,①式成立.
綜上所述,的取值集合為
.
(Ⅱ)由題意知,令
則
令,則
.當
時,
單調遞減;當
時,
單調遞增.故當
,
即
從而,
又
所以因為函數
在區間
上的圖像是連續不斷的一條曲線,所以存在
使
即
成立.
【點評】本題考查利用導函數研究函數單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數與方程思想等數學方法.第一問利用導函數法求出取最小值
對一切x∈R,f(x)
1恒成立轉化為
從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數,研究這個函數的性質進行分析判斷.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com