題目列表(包括答案和解析)
已知函數的最小值為0,其中
(Ⅰ)求的值;
(Ⅱ)若對任意的有
≤
成立,求實數
的最小值;
(Ⅲ)證明(
).
【解析】(1)解:
的定義域為
由,得
當x變化時,,
的變化情況如下表:
x |
|
|
|
|
- |
0 |
+ |
|
|
極小值 |
|
因此,在
處取得最小值,故由題意
,所以
(2)解:當時,取
,有
,故
時不合題意.當
時,令
,即
令,得
①當時,
,
在
上恒成立。因此
在
上單調遞減.從而對于任意的
,總有
,即
在
上恒成立,故
符合題意.
②當時,
,對于
,
,故
在
上單調遞增.因此當取
時,
,即
不成立.
故不合題意.
綜上,k的最小值為.
(3)證明:當n=1時,不等式左邊==右邊,所以不等式成立.
當時,
在(2)中取,得
,
從而
所以有
綜上,,
在四棱錐中,
平面
,底面
為矩形,
.
(Ⅰ)當時,求證:
;
(Ⅱ)若邊上有且只有一個點
,使得
,求此時二面角
的余弦值.
【解析】第一位女利用線面垂直的判定定理和性質定理得到。當a=1時,底面ABCD為正方形,
又因為,
………………2分
又,得證。
第二問,建立空間直角坐標系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
設BQ=m,則Q(1,m,0)(0《m《a》
要使,只要
所以,即
………6分
由此可知時,存在點Q使得
當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得
由此知道a=2, 設平面POQ的法向量為
,所以
平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
解:(Ⅰ)當時,底面ABCD為正方形,
又因為,
又
………………3分
(Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標系,如圖所示,
則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
設BQ=m,則Q(1,m,0)(0《m《a》要使,只要
所以,即
………6分
由此可知時,存在點Q使得
當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,
設平面POQ的法向量為
,所以
平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
(本小題滿分12分)設函數
(1)當時,求函數
的最大值;
(2)令,(
)其圖象上任意一點
處切線的斜率
≤
恒成立,求實數
的取值范圍;
(3)當,
,方程
有唯一實數解,求正數
的值.
設函數
(1)當時,求函數
的最大值;
(2)令,(
)其圖象上任意一點
處切線的斜率
≤
恒成立,求實數
的取值范圍;
(3)當,
,方程
有唯一實數解,求正數
的值.
設函數
(1)當時,求函數
的最大值;
(2)令,(
)
其圖象上任意一點處切線的斜率
≤
恒成立,求實數
的取值范圍;
(3)當,
,方程
有唯一實數解,求正數
的值.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com