題目列表(包括答案和解析)
已知函數(shù)f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實數(shù)x只有一個.
(1)求函數(shù)f(x)的表達式;
(2)若數(shù)列{an}滿足a1=,an+1=f(an),bn=
-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項公式;
(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=.…………………………………………4分
(2)an+1=f(an)=(n∈N*),bn=
-1, ∴
=
=
=
,
∴{bn}為等比數(shù)列,q=.又∵a1=
,∴b1=
-1=
,
bn=b1qn-1=n-1=
n(n∈N*).……………………………9分
(3)證明:∵anbn=an=1-an=1-
=
,
∴a1b1+a2b2+…+anbn=+
+…+
<
+
+…+
==1-
<1(n∈N*).
設(shè)拋物線:
(
>0)的焦點為
,準(zhǔn)線為
,
為
上一點,已知以
為圓心,
為半徑的圓
交
于
,
兩點.
(Ⅰ)若,
的面積為
,求
的值及圓
的方程;
(Ⅱ)若,
,
三點在同一條直線
上,直線
與
平行,且
與
只有一個公共點,求坐標(biāo)原點到
,
距離的比值.
【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關(guān)系、點到直線距離公式、線線平行等基礎(chǔ)知識,考查數(shù)形結(jié)合思想和運算求解能力.
【解析】設(shè)準(zhǔn)線于
軸的焦點為E,圓F的半徑為
,
則|FE|=,
=
,E是BD的中點,
(Ⅰ) ∵,∴
=
,|BD|=
,
設(shè)A(,
),根據(jù)拋物線定義得,|FA|=
,
∵的面積為
,∴
=
=
=
,解得
=2,
∴F(0,1), FA|=, ∴圓F的方程為:
;
(Ⅱ) 解析1∵,
,
三點在同一條直線
上, ∴
是圓
的直徑,
,
由拋物線定義知,∴
,∴
的斜率為
或-
,
∴直線的方程為:
,∴原點到直線
的距離
=
,
設(shè)直線的方程為:
,代入
得,
,
∵與
只有一個公共點,
∴
=
,∴
,
∴直線的方程為:
,∴原點到直線
的距離
=
,
∴坐標(biāo)原點到,
距離的比值為3.
解析2由對稱性設(shè),則
點關(guān)于點
對稱得:
得:,直線
切點
直線
坐標(biāo)原點到距離的比值為
先閱讀理解下面的例題,再按要求解答:
例題:解一元二次不等式.
解:∵,
∴.
由有理數(shù)的乘法法則“兩數(shù)相乘,同號得正”,有
(1) (2)
解不等式組(1),得,
解不等式組(2),得,w.w.w.k.s.5.u.c.o.m
故的解集為
或
,
即一元二次不等式的解集為
或
.
已知函數(shù),數(shù)列
的項滿足:
,(1)試求
(2) 猜想數(shù)列的通項,并利用數(shù)學(xué)歸納法證明.
【解析】第一問中,利用遞推關(guān)系,
,
第二問中,由(1)猜想得:然后再用數(shù)學(xué)歸納法分為兩步驟證明即可。
解: (1) ,
,
…………….7分
(2)由(1)猜想得:
(數(shù)學(xué)歸納法證明)i) ,
,命題成立
ii) 假設(shè)時,
成立
則時,
綜合i),ii) : 成立
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設(shè)E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.
【解析】解法一:如圖,以點A為原點建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).
(1)證明:易得,
于是
,所以
(2) ,
設(shè)平面PCD的法向量
,
則,即
.不防設(shè)
,可得
.可取平面PAC的法向量
于是
從而
.
所以二面角A-PC-D的正弦值為.
(3)設(shè)點E的坐標(biāo)為(0,0,h),其中,由此得
.
由,故
所以,,解得
,即
.
解法二:(1)證明:由,可得
,又由
,
,故
.又
,所以
.
(2)如圖,作于點H,連接DH.由
,
,可得
.
因此,從而
為二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,
因此所以二面角
的正弦值為
.
(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設(shè)交點為F,連接BE,EF. 故
或其補角為異面直線BE與CD所成的角.由于BF∥CD,故
.在
中,
故
在中,由
,
,
可得.由余弦定理,
,
所以.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com