日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

2. 研究集合,首先必須弄清代表元素,才能理解集合的意義. (1)已知“集合M={y|y=x2 ,x∈R},N={y|y=x2+1,x∈R},求M∩N ,與“集合M={(x,y)|y=x2 ,x∈R},N={(x,y)|y=x2+1,x∈R}求M∩N 的區(qū)別. (2)已知集合.則中的元素個數(shù)是 個.你注意空集了嗎? (3)設的定義域A是無限集.則下列集合中必為無限集的有 ① ② ③ ④ ⑤ 查看更多

 

題目列表(包括答案和解析)

四位同學在研究函數(shù)f(x)=-
x
1+|x|
(x∈R)時,分別給出下面四個結(jié)論:
①函數(shù)f(x)的值域為(-1,1);
②若x1,x2∈R且x1<x2<0,則一定有
f(x1)
x1
f(x2)
x2

③若x1,x2∈R且x1<x2,則一定有
f(x1)
x1
f(x2)
x2

④若集合M=[a,b],N={y|y=f(x),x∈M},則使M=N成立的有序?qū)崝?shù)對(a,b)只有一個.
則上述四個結(jié)論中正確的是(  )
A、①②B、①③C、①④D、②④

查看答案和解析>>

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

單調(diào)遞減;當單調(diào)遞增,故當時,取最小值

于是對一切恒成立,當且僅當.        ①

時,單調(diào)遞增;當時,單調(diào)遞減.

故當時,取最大值.因此,當且僅當時,①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當時,單調(diào)遞減;當時,單調(diào)遞增.故當

從而

所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點評】本題考查利用導函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學方法.第一問利用導函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進行分析判斷.

 

查看答案和解析>>

在中學階段,對許多特定集合(如整數(shù)集、有理數(shù)集、實數(shù)集等)的學習常常是以定義運算(如四則運算)和研究運算律為主要內(nèi)容.現(xiàn)設集合A由全體二元有序?qū)崝?shù)組組成,在A上定義一個運算,記為?,對于A中的任意兩個元素α=(a,b),β=(c,d),現(xiàn)規(guī)定:α?β=(ad+bc,bd-ac).
(1)計算:(2,3)?(-1,4);  
(2)A中是否存在元素γ滿足:對于任意α∈A,都有γ?α=α成立,若存在,請求出元素γ;若不存在,請說明理由.

查看答案和解析>>

函數(shù)概念的發(fā)展歷程

  17世紀,科學家們致力于運動的研究,如計算天體的位置,遠距離航海中對經(jīng)度和緯度的測量,炮彈的速度對于高度和射程的影響等.諸如此類的問題都需要探究兩個變量之間的關系,并根據(jù)這種關系對事物的變化規(guī)律作出判斷,如根據(jù)炮彈的速度推測它能達到的高度和射程.這正是函數(shù)產(chǎn)生和發(fā)展的背景.

  “function”一詞最初由德國數(shù)學家萊布尼茲(G.W.Leibniz,1646~1716)在1692年使用.在中國,清代數(shù)學家李善蘭(1811~1882)在1859年和英國傳教士偉烈亞力合譯的《代徽積拾級》中首次將“function”譯做“函數(shù)”.

  萊布尼茲用“函數(shù)”表示隨曲線的變化而改變的幾何量,如坐標、切線等.1718年,他的學生,瑞士數(shù)學家約翰·伯努利(J.Bernoulli,1667~1748)強調(diào)函數(shù)要用公式表示.后來,數(shù)學家認為這不是判斷函數(shù)的標準.只要一些變量變化,另一些變量隨之變化就可以了.所以,1755年,瑞士數(shù)學家歐拉(L.Euler,1707~1783)將函數(shù)定義為“如果某些變量,以一種方式依賴于另一些變量,我們將前面的變量稱為后面變量的函數(shù)”.

  當時很多數(shù)學家對于不用公式表示函數(shù)很不習慣,甚至抱懷疑態(tài)度.函數(shù)的概念仍然是比較模糊的.

  隨著對微積分研究的深入,18世紀末19世紀初,人們對函數(shù)的認識向前推進了.德國數(shù)學家狄利克雷(P.G.L.Dirichlet,1805~1859)在1837年時提出:“如果對于x的每一個值,y總有一個完全確定的值與之對應,則y是x的函數(shù)”.這個定義較清楚地說明了函數(shù)的內(nèi)涵.只要有一個法則,使得取值范圍中的每一個值,有一個確定的y和它對應就行了,不管這個法則是公式、圖象、表格還是其他形式.19世紀70年代以后,隨著集合概念的出現(xiàn),函數(shù)概念又進而用更加嚴謹?shù)募虾蛯Z言表述,這就是本節(jié)學習的函數(shù)概念.

  綜上所述可知,函數(shù)概念的發(fā)展與生產(chǎn)、生活以及科學技術的實際需要緊密相關,而且隨著研究的深入,函數(shù)概念不斷得到嚴謹化、精確化的表達,這與我們學習函數(shù)的過程是一樣的.

你能以函數(shù)概念的發(fā)展為背景,談談從初中到高中學習函數(shù)概念的體會嗎?

1.探尋科學家發(fā)現(xiàn)問題的過程,對指導我們的學習有什么現(xiàn)實意義?

2.萊布尼茲、狄利克雷等科學家有哪些品質(zhì)值得我們學習?

查看答案和解析>>

數(shù)學家歐拉

  歐拉(Euler),瑞士數(shù)學家及自然科學家.1707年4月15日出生于瑞士的巴塞爾,1783年9月18日于俄國彼得堡去逝.歐拉出生于牧師家庭,自幼受父親的教育,13歲時入讀巴塞爾大學,15歲大學畢業(yè),16歲獲碩士學位.

  歐拉是18世紀數(shù)學界最杰出的人物之一,他不但為數(shù)學界做出了巨大的貢獻,更把數(shù)學推至幾乎整個物理的領域.他是數(shù)學史上最多產(chǎn)的數(shù)學家,平均每年寫出八百多頁的論文,還寫了大量的力學、分析學、幾何學、變分法等的課本,《無窮小分析引論》、《微分學原理》、《積分學原理》等都成為數(shù)學中的經(jīng)典著作.

  歐拉對數(shù)學符號的創(chuàng)立及推廣起了積極的作用.比如用e表示自然對數(shù)的底,用i表示-1,用f(x)作為函數(shù)的符號,π雖不是歐拉首先提出的,但是在歐拉倡導下推廣普及的.尤為不可思議的是歐拉將數(shù)學中最為活躍的五個數(shù)1,0,π,e,i竟用一個美妙絕倫的公式聯(lián)系了起來:eiπ+1=0(歐拉指數(shù)公式),在西方數(shù)學界甚至認為此公式不亞于神的力量.

  歐拉對數(shù)學的研究如此廣泛,因此在許多數(shù)學的分支中也可經(jīng)常見到以他的名字命名的重要常數(shù)、公式和定理.

1.你對歐拉(Euler)了解嗎?請查閱歐拉(Euler)的故事,對于他“13歲時入讀巴塞爾大學,15歲大學畢業(yè),16歲獲碩士學位”,你有何感觸?

2.作為新時代的青年,你做好將來為科學事業(yè)做貢獻的思想準備了嗎?

查看答案和解析>>


同步練習冊答案
主站蜘蛛池模板: 一区二区三区在线 | 干比网 | 开心激情网站 | 中国妞xxxhd露脸偷拍视频 | 国产在线不卡观看 | 日批视频在线播放 | 亚洲电影一区 | 久久综合一区二区 | 日本免费在线 | 在线视频 亚洲 | 犬夜叉在线观看 | 国产最新精品视频 | 中文久久 | 超碰97免费在线 | 国产99一区 | 色com| 一区二区三区在线免费观看 | 欧美成人精品激情在线观看 | 久久九九国产精品 | 国产伦精品一区二区三区在线 | 国产精品极品美女在线观看免费 | 五月激情综合网 | 中文字幕在线播放第一页 | 日本三级在线视频 | 欧美在线观看视频一区二区 | 日韩一区二区三区免费观看 | 日韩免费福利视频 | 日韩成人免费电影 | 91精品在线播放 | 97成人精品视频在线观看 | 日本一区二区久久 | 在线日韩| 国产一级网站 | 欧美国产精品一区 | 欧美2区 | 伊人伊人伊人 | 久草中文在线观看 | 超碰成人av | 免费观看毛片 | 欧美三区视频 | 国产高清在线精品一区 |