題目列表(包括答案和解析)
已知函數 f (x)=sinωx+
(ω>0,x∈R),且函數 f (x) 的最小正周期為π.
(Ⅰ)求函數 f (x) 的解析式;
(Ⅱ)在△ABC中,角A,B,C所對的邊分別為a,b,c.若f (B)=1,,
且a+c=4,試求b2的值.
|
|
集合A={x│x 2-2x≤0,x∈R}= A={x│0≤x ≤2,x∈R},所以A∩Z={0,1,2},共有3個元素。
方程的解為_____________.
定義在R上的函數f(x)在區間(-∞,2)上是增函數,且f(x+2)的圖象關于x=0對稱,則
A.f(-1)<f(3) B.f(0)>f(3) C.f(-1)=f(3) D.f(0)=f(3)
已知函數.
(Ⅰ)求函數的單調區間;
(Ⅱ)設,若對任意
,
,不等式
恒成立,求實數
的取值范圍.
【解析】第一問利用的定義域是
由x>0及 得1<x<3;由x>0及
得0<x<1或x>3,
故函數的單調遞增區間是(1,3);單調遞減區間是
第二問中,若對任意不等式
恒成立,問題等價于
只需研究最值即可。
解: (I)的定義域是
......1分
............. 2分
由x>0及 得1<x<3;由x>0及
得0<x<1或x>3,
故函數的單調遞增區間是(1,3);單調遞減區間是
........4分
(II)若對任意不等式
恒成立,
問題等價于,
.........5分
由(I)可知,在上,x=1是函數極小值點,這個極小值是唯一的極值點,
故也是最小值點,所以; ............6分
當b<1時,;
當時,
;
當b>2時,;
............8分
問題等價于 ........11分
解得b<1 或 或
即
,所以實數b的取值范圍是
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com