題目列表(包括答案和解析)
如圖1,已知:拋物線與
軸交于
兩點(diǎn),與
軸交于點(diǎn)
,經(jīng)過(guò)
兩點(diǎn)的直線是
,連結(jié)
.
(1)兩點(diǎn)坐標(biāo)分別為
(_____,_____)、
(_____,_____),拋物線的函數(shù)關(guān)系式為______________;
(2)判斷的形狀,并說(shuō)明理由;
(3)若內(nèi)部能否截出面積最大的矩形
(頂點(diǎn)
在
各邊上)?若能,求出在
邊上的矩形頂點(diǎn)的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.(本題共11分)
(本題滿分10分)已知二次函數(shù)的圖象與x軸分別交于點(diǎn)A、B,與y軸交于點(diǎn)C.點(diǎn)D是拋物線的頂點(diǎn).
(1)如圖①,連接AC,將△OAC沿直線AC翻折,若點(diǎn)O的對(duì)應(yīng)點(diǎn)O'恰好落在該拋物
線的對(duì)稱軸上,求實(shí)數(shù)a的值;
(2)如圖②,在正方形EFGH中,點(diǎn)E、F的坐標(biāo)分別是(4,4)、(4,3),邊HG位于
邊EF的右側(cè).小林同學(xué)經(jīng)過(guò)探索后發(fā)現(xiàn)了一個(gè)正確的命題:“若點(diǎn)P是邊EH或邊HG上的
任意一點(diǎn),則四條線段PA、PB、PC、PD不能與任何一個(gè)平行四邊形的四條邊對(duì)應(yīng)相等(即
這四條線段不能構(gòu)成平行四邊形).”若點(diǎn)P是邊EF或邊FG上的任意一點(diǎn),剛才的結(jié)論是
否也成立?請(qǐng)你積極探索,并寫(xiě)出探索過(guò)程;
(3)如圖②,當(dāng)點(diǎn)P在拋物線對(duì)稱軸上時(shí),設(shè)點(diǎn)P的縱坐標(biāo)t是大于3的常數(shù),試問(wèn):是
否存在一個(gè)正數(shù)a,使得四條線段PA、PB、PC、PD與一個(gè)平行四邊形的四條邊對(duì)應(yīng)相等
(即這四條線段能構(gòu)成平行四邊形)?請(qǐng)說(shuō)明理由.
(本題滿分10分)已知二次函數(shù)的圖象與x軸分別交于點(diǎn)A、B,與y軸交于點(diǎn)C.點(diǎn)D是拋物線的頂點(diǎn).
(1)如圖①,連接AC,將△OAC沿直線AC翻折,若點(diǎn)O的對(duì)應(yīng)點(diǎn)O'恰好落在該拋物
線的對(duì)稱軸上,求實(shí)數(shù)a的值;
(2)如圖②,在正方形EFGH中,點(diǎn)E、F的坐標(biāo)分別是(4,4)、(4,3),邊HG位于
邊EF的右側(cè).小林同學(xué)經(jīng)過(guò)探索后發(fā)現(xiàn)了一個(gè)正確的命題:“若點(diǎn)P是邊EH或邊HG上的
任意一點(diǎn),則四條線段PA、PB、PC、PD不能與任何一個(gè)平行四邊形的四條邊對(duì)應(yīng)相等(即
這四條線段不能構(gòu)成平行四邊形).”若點(diǎn)P是邊EF或邊FG上的任意一點(diǎn),剛才的結(jié)論是
否也成立?請(qǐng)你積極探索,并寫(xiě)出探索過(guò)程;
(3)如圖②,當(dāng)點(diǎn)P在拋物線對(duì)稱軸上時(shí),設(shè)點(diǎn)P的縱坐標(biāo)t是大于3的常數(shù),試問(wèn):是
否存在一個(gè)正數(shù)a,使得四條線段PA、PB、PC、PD與一個(gè)平行四邊形的四條邊對(duì)應(yīng)相等
(即這四條線段能構(gòu)成平行四邊形)?請(qǐng)說(shuō)明理由.
(本題滿分14分,其中第(1)、(2)小題各4分,第(3)小題6分)已知:如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)的圖像經(jīng)過(guò)點(diǎn)A(-1,1)和點(diǎn)B(2,2),該函數(shù)圖像的對(duì)稱軸與直線OA、OB分別交于點(diǎn)C和點(diǎn)D.
1.(1)求這個(gè)二次函數(shù)的解析式和它的對(duì)稱軸;
2.(2)求證:∠ABO=∠CBO;
3.(3)如果點(diǎn)P在直線AB上,且△POB
與△BCD相似,求點(diǎn)P的坐標(biāo).
一、1.B 2.C 3.C 4.B 5.D 6.D
二、7、 8、-2<x<3 9、SSS
10、∏
11、22.5° 12、5
13、2 14、20 15、15
三、16.(1)
(2)化簡(jiǎn)結(jié)果為
(求值時(shí)除tang45°外都可帶入)
17.(略)
18.(1)6% 144 ----------2分
(2)甲的平均成績(jī)72×40%+98×40%+60×20%=92(分)----------4分
乙的平均成績(jī) 90×40%+75×40%+95×20%=85(分) ---------6分
所以他們倆都達(dá)到優(yōu)秀生水平;
(3)(回答只要合理就給分) -----------------8分
19、(1)(略) --------------------5分
(2)
--------------------9分
20、0.2小時(shí)
21、(1)略 ------------4分
(2)
---------------9分
22(1)
-------------------3分
(2)定價(jià)為3元較為合適 ----------------7分
(3)當(dāng)定價(jià)為3.5元時(shí)利潤(rùn)最大--------11分
23.解:(1)拋物線的解析式為
-------------------3分.
(可利用一般式、頂點(diǎn)式、對(duì)稱性關(guān)系等方法解答)
(2)當(dāng)動(dòng)點(diǎn)B運(yùn)動(dòng)到為頂點(diǎn)時(shí),平行四邊形ABCD是菱形,此時(shí)點(diǎn)D恰好是拋物線
的解析式為
的定點(diǎn),
---------------5分
,
,
-------------------6分
所以:.
------------------7分
(3)
能為矩形.-------------8分
過(guò)點(diǎn)作
軸于
,由點(diǎn)
在
上,可設(shè)點(diǎn)
的坐標(biāo)為
,
則,
.
易知,當(dāng)且僅當(dāng)時(shí),
為矩形.
在中,由勾股定理得,
,---------------9分
,
(舍去),
.
所以,當(dāng)點(diǎn)坐標(biāo)為
或
時(shí),
為矩形, -----------------10分
此時(shí),點(diǎn)的坐標(biāo)分別是
.
因此,符合條件的矩形有且只有2個(gè),即矩形和矩形
.
設(shè)直線與
軸交于
,顯然,
,
,
.
由該圖形的對(duì)稱性知矩形與矩形
重合部分是菱形,
其面積為.---------11分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com