題目列表(包括答案和解析)
已知m>1,直線,橢圓C:
,
、
分別為橢圓C的左、右焦點.
(Ⅰ)當直線過右焦點時,求直線的方程;
(Ⅱ)設直線與橢圓C交于A、B兩點,△A、△B
的重心分別為G、H.若原點O在以線段GH為直徑的圓內,求實數m的取值范圍.[
【解析】第一問中因為直線經過點
(
,0),所以
=
,得
.又因為m>1,所以
,故直線的方程為
第二問中設,由
,消去x,得
,
則由,知
<8,且有
由題意知O為的中點.由
可知
從而
,設M是GH的中點,則M(
).
由題意可知,2|MO|<|GH|,得到范圍
已知曲線C:(m∈R)
(1) 若曲線C是焦點在x軸點上的橢圓,求m的取值范圍;
(2) 設m=4,曲線c與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線c交于不同的兩點M、N,直線y=1與直線BM交于點G.求證:A,G,N三點共線。
【解析】(1)曲線C是焦點在x軸上的橢圓,當且僅當解得
,所以m的取值范圍是
(2)當m=4時,曲線C的方程為,點A,B的坐標分別為
,
由,得
因為直線與曲線C交于不同的兩點,所以
即
設點M,N的坐標分別為,則
直線BM的方程為,點G的坐標為
因為直線AN和直線AG的斜率分別為
所以
即,故A,G,N三點共線。
已知曲線上動點
到定點
與定直線
的距離之比為常數
.
(1)求曲線的軌跡方程;
(2)若過點引曲線C的弦AB恰好被點
平分,求弦AB所在的直線方程;
(3)以曲線的左頂點
為圓心作圓
:
,設圓
與曲線
交于點
與點
,求
的最小值,并求此時圓
的方程.
【解析】第一問利用(1)過點作直線
的垂線,垂足為D.
代入坐標得到
第二問當斜率k不存在時,檢驗得不符合要求;
當直線l的斜率為k時,;,化簡得
第三問點N與點M關于X軸對稱,設,, 不妨設
.
由于點M在橢圓C上,所以.
由已知,則
,
由于,故當
時,
取得最小值為
.
計算得,,故
,又點
在圓
上,代入圓的方程得到
.
故圓T的方程為:
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com