題目列表(包括答案和解析)
(本小題滿分13分)
已知某幾何體的三視圖如圖所示,其中分別是該幾何體的一個頂點P在三個投影面上的投影,
分別是另四個頂點A,B,C,D的投影。
(I)從①②兩個圖中選擇出該幾何體的直觀圖;
(II)求直線PA與平面PBC所成角的正弦值;
(III)設平面PAD與平面ABC的交線為,求二面角A—
—B的大小。
己知在銳角ΔABC中,角所對的邊分別為
,且
(I )求角大小;
(II)當時,求
的取值范圍.
20.如圖1,在平面內,是
的矩形,
是正三角形,將
沿
折起,使
如圖2,
為
的中點,設直線
過點
且垂直于矩形
所在平面,點
是直線
上的一個動點,且與點
位于平面
的同側。
(1)求證:平面
;
(2)設二面角的平面角為
,若
,求線段
長的取值范圍。
![]() |
21.已知A,B是橢圓的左,右頂點,
,過橢圓C的右焦點F的直線交橢圓于點M,N,交直線
于點P,且直線PA,PF,PB的斜率成等差數列,R和Q是橢圓上的兩動點,R和Q的橫坐標之和為2,RQ的中垂線交X軸于T點
(1)求橢圓C的方程;
(2)求三角形MNT的面積的最大值
22. 已知函數
,
(Ⅰ)若在
上存在最大值與最小值,且其最大值與最小值的和為
,試求
和
的值。
(Ⅱ)若為奇函數:
(1)是否存在實數,使得
在
為增函數,
為減函數,若存在,求出
的值,若不存在,請說明理由;
(2)如果當時,都有
恒成立,試求
的取值范圍.
一、選擇題:
DDABD ACCBB CD
二、填空題:
13. 14.
15.32 16.
三、解答題:
17.解:(I)服從超幾何分布
3分
(II) 5分
7分
9分
Y
5
6
7
P
…………10分
|