日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

單調遞減.在內單調遞增.所以. 查看更多

 

題目列表(包括答案和解析)

如圖,,…,,…是曲線上的點,,…,,…是軸正半軸上的點,且,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標原點).

(1)寫出之間的等量關系,以及之間的等量關系;

(2)求證:);

(3)設,對所有恒成立,求實數的取值范圍.

【解析】第一問利用有得到

第二問證明:①當時,可求得,命題成立;②假設當時,命題成立,即有則當時,由歸納假設及

第三問 

.………………………2分

因為函數在區間上單調遞增,所以當時,最大為,即

解:(1)依題意,有,………………4分

(2)證明:①當時,可求得,命題成立; ……………2分

②假設當時,命題成立,即有,……………………1分

則當時,由歸納假設及

解得不合題意,舍去)

即當時,命題成立.  …………………………………………4分

綜上所述,對所有.    ……………………………1分

(3) 

.………………………2分

因為函數在區間上單調遞增,所以當時,最大為,即

.……………2分

由題意,有. 所以,

 

查看答案和解析>>

中,滿足,邊上的一點.

(Ⅰ)若,求向量與向量夾角的正弦值;

(Ⅱ)若=m  (m為正常數) 且邊上的三等分點.,求值;

(Ⅲ)若的最小值。

【解析】第一問中,利用向量的數量積設向量與向量的夾角為,則

=,得,又,則為所求

第二問因為=m所以

(1)當時,則= 

(2)當時,則=

第三問中,解:設,因為

所以于是

從而

運用三角函數求解。

(Ⅰ)解:設向量與向量的夾角為,則

=,得,又,則為所求……………2

(Ⅱ)解:因為=m所以

(1)當時,則=-2分

(2)當時,則=--2分

(Ⅲ)解:設,因為

所以于是

從而---2

==

=…………………………………2

,則函數,在遞減,在上遞增,所以從而當時,

 

查看答案和解析>>

(08年長沙一中一模理)已知函數的圖象過點,且在內單調遞減,在上單調遞增.

(1)證明并求的解析式;

(2)若對于任意的,不等式恒成立,試問這樣的是否存在.若存在,請求出的范圍,若不存在,說明理由;

(3)已知數列中,求證:.

查看答案和解析>>

對于定義域為的函數,若同時滿足:①內單調遞增或單調遞減;②存在區間,使上的值域為;那么把函數)叫做閉函數.

(1) 求閉函數符合條件②的區間

(2) 若是閉函數,求實數的取值范圍.

查看答案和解析>>

(本小題共12分)

已知函數的圖象過點,且在內單調遞減,在上單調遞增。

(1)求的解析式;

(2)若對于任意的,不等式恒成立,試問這樣的是否存在.若存在,請求出的范圍,若不存在,說明理由;

 

查看答案和解析>>


同步練習冊答案
主站蜘蛛池模板: 欧美一性一乱一交 | 国产欧美日韩综合精品一区二区 | 午夜久久久| 国产日韩精品视频 | 伊人网在线视频 | 国产真实乱全部视频 | 国产精品a久久久久 | 四虎永久在线 | av午夜电影 | 久久99精品久久久久久水蜜桃 | 精品国产91乱码一区二区三区 | 一区二区av | 国产午夜精品一区二区三区嫩草 | 精品久久国产 | 中文字幕在线观看精品视频 | 亚洲国产精品久久 | 免费视频色 | www黄| 日韩精品免费在线视频 | 日韩欧美中文 | 日韩中文视频 | 伊人免费在线观看高清版 | 欧美精品免费在线观看 | 日韩欧美在线观看 | 国产精品一区二区久久久久 | 亚洲欧美日韩精品 | 超碰人人99 | 在线观看视频一区 | 日韩一区二区三区在线 | 国产成人精品一区二 | 日本欧美在线观看 | 久久久久久久中文 | 亚洲欧美电影 | 伊人网综合视频 | 精品视频免费在线 | 国产三级自拍 | 国产精品1区2区3区 国产成人精品一区二区三区四区 | 成人在线一区二区三区 | 中文字幕免费在线观看 | 国产成人免费 | 日本免费在线观看 |