日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

A. B. C. D. 查看更多

 

題目列表(包括答案和解析)

       A.                   B.                    C.                    D.

查看答案和解析>>

a,b,c,d∈R,m=,則m與n的大小關系是(    )

A.m<n          B.m>n          C.m≤n          D.m≥n

查看答案和解析>>

a,b,c,d∈R+,則(a+b+c+d)(+++)的最小值為__________.

查看答案和解析>>

a,b,c,d∈R+,則(a+b+c+d)(+++)的最小值為__________.

查看答案和解析>>

a,b,c,d∈R+,則(a+b+c+d)(+++)的最小值為__________.

查看答案和解析>>

第I卷(選擇題共50分)

一、選擇題:本大題共10個小題,每小題5分,共50分,在每小題給出的四個選項中有且只有一項是符合題目要求的.

題號

1

2

3

4

5

6

7

8

9

10

總分

答案

D

B

C

C

C

D

B

D

B

D

 

第Ⅱ卷(非選擇題共100分)

二、填空題:本大題共7個小題,每小題4分,共28分,將答案填寫在題中的橫線上.

    11.  0                          12.                    

    13.     -1                       14.            

15.                16.                 17.___ ④____

三、解答題:本大題共5個小題,第18-21題每小題14分,第22題16分,共72分,解答應寫出文字說明,證明過程或演算步驟

18、數列滿足:

(Ⅰ)記,求證:是等比數列;(Ⅱ)求數列的通項公式;

解:(Ⅰ)

是等比數列;

(Ⅱ)

19、如圖,平面四邊形ABCD中, AB=13, AC=10, AD=5,,=120,

(Ⅰ) 求;  (Ⅱ) 設求實數xy的值.

解:(Ⅰ)設

(Ⅱ)

(其他方法解對同樣給分)

20、如圖,正三棱柱ABCA1B1C1的各棱長都相等,DE分別是CC1AB1的中點,點FBC上且滿足BFFC=1∶3 

(Ⅰ)若MAB中點,求證  BB1∥平面EFM

(Ⅱ)求證  EFBC

(Ⅲ)求二面角A1B1DC1的大小 

(1)    證明 連結EMMF,∵ME分別是正三棱柱的棱AB

AB1的中點,

BB1ME,又BB1平面EFM,∴BB1∥平面EFM 

(2)證明  取BC的中點N,連結AN由正三棱柱得  ANBC

BFFC=1∶3,∴FBN的中點,故MFAN

MFBC,而BCBB1BB1ME 

MEBC,由于MFME=M,∴BC⊥平面EFM

EF平面EFM,∴BCEF 

(3)解  取B1C1的中點O,連結A1O知,A1O⊥面BCC1B1,由點OB1D的垂線OQ,垂足為Q,連結A1Q,由三垂線定理,A1QB1D,故∠A1QD為二面角A1B1DC的平面角,易得∠A1QO=arctan 

(建立坐標系解對同樣給分)

21、已知點D在定線段MN上,且|MN|=3,|DN|=1,一個動圓C過點D且與MN相切,分別過M、N作圓C的另兩條切線交于點P.

(Ⅰ)建立適當的平面直角坐標系,求點P的軌跡方程;

(Ⅱ)過點M作直線l與所求軌跡交于兩個不同的點A、B,

,且λ∈[2-,2+],記直線l

與直線MN夾角為θ,求的取值范圍.

解:(Ⅰ)以直線MN為x軸,MN的中點為坐標原點O,

建立直角坐標系xOy. 

∵PM-PN=(PE+EM)-(PF+FN)=MD-ND=1

或PM-PN=(PE+EM)-(PF+FN)=MD-ND=-1

∴點P的軌跡是以M、N為焦點,實軸長為1的雙曲線(不包含頂點),

其軌跡方程為(y≠0) 

(Ⅱ)設A(x1,y1),B(x2,y2),則=(x1+2,y1),=(x2+2,y2)

設AB:my=x+,代入得,3(my-)2-y2-2=0,

即(8m2-1)y2-24my+16=0.

 =λ,y1=-λy2,∴ 

得,

∈[-2,0],即

 ,故

22、已知函數是定義在上的奇函數,當時,有

(其中為自然對數的底,).

(Ⅰ)若,求函數的解析式;

(Ⅱ)試問:是否存在實數,使得當的最小值是?如果存在,求出實數的值;如果不存在,請說明理由.

(Ⅲ)設),求證:當時,

解:(Ⅰ)時,,故有,由此及是奇函數得,因此,函數的解析式為

(Ⅱ)當時,

①若,則在區間上是減函數,故此時函數在區間上沒有最小值;

②若,則令,且在區間上是減函數,而在區間上是增函數,故當時,

綜上所述,當時,函數在區間上的最小值是3.

(Ⅲ)證明:令。當時,注意到,故有

       ①當時,注意到,故

       ②當時,有,故函數在區間上是增函數,從而有

       因此,當時,有

       又因為是偶函數,故當時,同樣有,即

       綜上所述,當時,有

 


同步練習冊答案
主站蜘蛛池模板: 精品福利一区二区三区 | 久久国产经典视频 | 噜噜噜天天躁狠狠躁夜夜精品 | 99精品视频一区二区三区 | 麻豆精品一区二区 | 一区二区免费在线 | 99精品九九 | 久久综合狠狠综合久久综合88 | а_天堂中文最新版地址 | 久国久产久精永久网页 | 欧美成人免费在线观看 | 日韩精品一区二区三区在线观看 | 91国内视频在线观看 | 97人人爱| 欧美激情精品久久久久久 | 四虎免费在线播放 | 男女黄色免费网站 | 久久久亚洲一区 | 最新久久精品 | 日韩一区二区三区在线观看 | 草久在线视频 | 五月婷婷在线观看视频 | www国产亚洲精品久久网站 | 亚洲成人精品区 | 黄色片在线免费观看 | 久久亚洲成人av | 中国香蕉视频 | 一本色道久久综合狠狠躁篇的优点 | 亚洲高清在线视频 | 国产精品成av人在线视午夜片 | 久久亚洲欧美日韩精品专区 | 亚洲精选免费视频 | 伊人无码高清 | 国产ts余喵喵和直男多体位 | 午夜精品久久久久久久蜜桃app | 色婷婷综合久久久久中文一区二区 | 永久黄网站色视频免费 | 亚洲啪视频| 欧美日韩精品一区二区在线播放 | 国产精品久久久久久久7电影 | 亚洲午夜精品在线观看 |