題目列表(包括答案和解析)
(本題滿分14分)
已知實(shí)數(shù),曲線
與直線
的交點(diǎn)為
(異于原點(diǎn)
),在曲線
上取一點(diǎn)
,過(guò)點(diǎn)
作
平行于
軸,交直線
于點(diǎn)
,過(guò)點(diǎn)
作
平行于
軸,交曲線
于點(diǎn)
,接著過(guò)點(diǎn)
作
平行于
軸,交直線
于點(diǎn)
,過(guò)點(diǎn)
作
平行于
軸,交曲線
于點(diǎn)
,如此下去,可以得到點(diǎn)
,
,…,
,… . 設(shè)點(diǎn)
的坐標(biāo)為
,
.
(Ⅰ)試用表示
,并證明
;
(Ⅱ)試證明,且
(
);
(本題滿分14分)
已知函數(shù)圖象上一點(diǎn)
處的切線方程為
.
(Ⅰ)求的值;
(Ⅱ)若方程在
內(nèi)有兩個(gè)不等實(shí)根,求
的取值范圍(其中
為自然對(duì)數(shù)的底數(shù));
(Ⅲ)令,若
的圖象與
軸交于
,
(其中
),
的中點(diǎn)為
,求證:
在
處的導(dǎo)數(shù)
.
(本題滿分14分)
已知曲線方程為
,過(guò)原點(diǎn)O作曲線
的切線
(1)求的方程;
(2)求曲線,
及
軸圍成的圖形面積S;
(本題滿分14分)
已知中心在原點(diǎn),對(duì)稱(chēng)軸為坐標(biāo)軸的橢圓,左焦點(diǎn),一個(gè)頂點(diǎn)坐標(biāo)為(0,1)
(1)求橢圓方程;
(2)直線過(guò)橢圓的右焦點(diǎn)
交橢圓于A、B兩點(diǎn),當(dāng)△AOB面積最大時(shí),求直線
方程。
(本題滿分14分)
如圖,在直三棱柱中,
,
,求二面角
的大小。
一、填空題:本大題共14小題,每小題5分,計(jì)70分.
1.第二象限 2. 3
3.Π 4. 5. _
_ 6. 2
7.
8. 9. 10 10.向右平移
11. 3.5 12.①④
13.
14.①③
二、解答題:本大題共6小題,計(jì)90分.
15.解:(1).
又,
,即
,
.
(2),
,
且
,
,即
的取值范圍是
.
16.(Ⅰ)證明:連結(jié)AF,在矩形ABCD中,因?yàn)锳D=4,AB=2,點(diǎn)F是BC的中點(diǎn),所以∠AFB=∠DFC=45°.所以∠AFD=90°,即AF⊥FD.又PA⊥平面ABCD,所以PA⊥FD.
所以FD⊥平面PAF. 故PF⊥FD.
(Ⅱ)過(guò)E作EH//FD交AD于H,則EH//平面PFD,且 AH=AD. 再過(guò)H作HG//PD交PA于G,則GH//平面PFD,且 AG=
PA. 所以平面EHG//平面PFD,則EG//平面PFD,從而點(diǎn)G滿足AG=
PA.
17.解:(1)由于⊙M與∠BOA的兩邊均相切,故M到OA及OB的距離均為⊙M的半
徑,則M在∠BOA的平分線上,
同理,N也在∠BOA的平分線上,即O,M,N
三點(diǎn)共線,且OMN為∠BOA的平分線,
∵M(jìn)的坐標(biāo)為,∴M到
軸的距離為1,即
⊙M的半徑為1,
則⊙M的方程為,
設(shè)⊙N的半徑為,其與
軸的的切點(diǎn)為C,連接MA、MC,
由Rt△OAM∽R(shí)t△OCN可知,OM:ON=MA:NC,即,
則OC=,則⊙N的方程為
;
(2)由對(duì)稱(chēng)性可知,所求的弦長(zhǎng)等于過(guò)A點(diǎn)直線MN的平行線被⊙截得的弦
的長(zhǎng)度,此弦的方程是,即:
,
圓心N到該直線的距離d=,則弦長(zhǎng)=
.
另解:求得B(),再得過(guò)B與MN平行的直線方程
,圓心N到該直線的距離
=
,則弦長(zhǎng)=
.
(也可以直接求A點(diǎn)或B點(diǎn)到直線MN的距離,進(jìn)而求得弦長(zhǎng))
18.解(1)由題意的中垂線方程分別為
,
于是圓心坐標(biāo)為…………………………………4分
=
>
,即
>
即
>
所以
>
,
于是>
即
>
,所以
<
即
<
<
………………8分
(2)假設(shè)相切, 則,……………………………………………………10分
,………13分
這與
<
<
矛盾.
故直線不能與圓
相切. ………………………………………………16分
19.解(Ⅰ)∵,
∴
∴,
∴
,令
,得
,列表如下:
2
0
遞減
極小值
遞增
∴在
處取得極小值
,
即的最小值為
.
,∵
,∴
,又
,∴
.
(Ⅱ)證明由(Ⅰ)知,的最小值是正數(shù),∴對(duì)一切
,恒有
從而當(dāng)
時(shí),恒有
,故
在
上是增函數(shù).
(Ⅲ)證明由(Ⅱ)知:在
上是增函數(shù),
∴當(dāng)時(shí),
, 又
,
∴,即
,∴
故當(dāng)時(shí),恒有
.
20.解:(1)數(shù)列{an}的前n項(xiàng)和,
…2分
又,
…………4分
是正項(xiàng)等比數(shù)列,
, …………6分
公比,數(shù)列
…………8分
(2)解法一:,
由 …………11分
,當(dāng)
, …………13分
又故存在正整數(shù)M,使得對(duì)一切
M的最小值為2.…16分
(2)解法二:令
,11分
由,
函數(shù)……13分
對(duì)于
故存在正整數(shù)M,使得對(duì)一切恒成立,M的最小值為2.……16分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com