日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

解:(1)設切點為.函數的導數為 查看更多

 

題目列表(包括答案和解析)

已知函數的圖象過坐標原點O,且在點處的切線的斜率是.

(Ⅰ)求實數的值; 

(Ⅱ)求在區間上的最大值;

(Ⅲ)對任意給定的正實數,曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

【解析】第一問當時,,則

依題意得:,即    解得

第二問當時,,令,結合導數和函數之間的關系得到單調性的判定,得到極值和最值

第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

不妨設,則,顯然

是以O為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

若方程(*)無解,不存在滿足題設要求的兩點P、Q.

(Ⅰ)當時,,則

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當時,,令

變化時,的變化情況如下表:

0

0

+

0

單調遞減

極小值

單調遞增

極大值

單調遞減

。∴上的最大值為2.

②當時, .當時, ,最大值為0;

時, 上單調遞增。∴最大值為

綜上,當時,即時,在區間上的最大值為2;

時,即時,在區間上的最大值為

(Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

不妨設,則,顯然

是以O為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

若方程(*)無解,不存在滿足題設要求的兩點P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時

代入(*)式得:    即   (**)

 ,則

上單調遞增,  ∵     ∴,∴的取值范圍是

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實數,曲線上存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上

 

查看答案和解析>>

設函數f(x)=lnxgx)=ax+,函數f(x)的圖像與x軸的交點也在函數g(x)的圖像上,且在此點處f(x)與g(x)有公切線.[來源:學。科。網]

(Ⅰ)求a、b的值; 

(Ⅱ)設x>0,試比較f(x)與g(x)的大小.[來源:學,科,網Z,X,X,K]

【解析】第一問解:因為f(x)=lnxgx)=ax+

則其導數為

由題意得,

第二問,由(I)可知,令

,  …………8分

是(0,+∞)上的減函數,而F(1)=0,            …………9分

∴當時,,有;當時,,有;當x=1時,,有

解:因為f(x)=lnxgx)=ax+

則其導數為

由題意得,

(11)由(I)可知,令

,  …………8分

是(0,+∞)上的減函數,而F(1)=0,            …………9分

∴當時,,有;當時,,有;當x=1時,,有

 

查看答案和解析>>

已知,函數

(1)當時,求函數在點(1,)的切線方程;

(2)求函數在[-1,1]的極值;

(3)若在上至少存在一個實數x0,使>g(xo)成立,求正實數的取值范圍。

【解析】本試題中導數在研究函數中的運用。(1)中,那么當時,  又    所以函數在點(1,)的切線方程為;(2)中令   有 

對a分類討論,和得到極值。(3)中,設,依題意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  當時,  又    

∴  函數在點(1,)的切線方程為 --------4分

(Ⅱ)令   有 

①         當

(-1,0)

0

(0,

,1)

+

0

0

+

極大值

極小值

的極大值是,極小值是

②         當時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

綜上所述   時,極大值為,無極小值

時  極大值是,極小值是        ----------8分

(Ⅲ)設

求導,得

    

在區間上為增函數,則

依題意,只需,即 

解得  (舍去)

則正實數的取值范圍是(

 

查看答案和解析>>

設函數

(1)當時,求曲線處的切線方程;

(2)當時,求的極大值和極小值;

(3)若函數在區間上是增函數,求實數的取值范圍.

【解析】(1)中,先利用,表示出點的斜率值這樣可以得到切線方程。(2)中,當,再令,利用導數的正負確定單調性,進而得到極值。(3)中,利用函數在給定區間遞增,說明了在區間導數恒大于等于零,分離參數求解范圍的思想。

解:(1)當……2分

   

為所求切線方程。………………4分

(2)當

………………6分

遞減,在(3,+)遞增

的極大值為…………8分

(3)

①若上單調遞增。∴滿足要求。…10分

②若

恒成立,

恒成立,即a>0……………11分

時,不合題意。綜上所述,實數的取值范圍是

 

查看答案和解析>>

已知函數f(x)=ex-ax,其中a>0.

(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

單調遞減;當單調遞增,故當時,取最小值

于是對一切恒成立,當且僅當.        ①

時,單調遞增;當時,單調遞減.

故當時,取最大值.因此,當且僅當時,①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當時,單調遞減;當時,單調遞增.故當

從而

所以因為函數在區間上的圖像是連續不斷的一條曲線,所以存在使成立.

【點評】本題考查利用導函數研究函數單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數與方程思想等數學方法.第一問利用導函數法求出取最小值對一切x∈R,f(x) 1恒成立轉化為從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數,研究這個函數的性質進行分析判斷.

 

查看答案和解析>>


同步練習冊答案
主站蜘蛛池模板: 一区三区视频 | 国内精品国产三级国产在线专 | 蜜臀久久精品 | 成人午夜天 | 色综合久久88色综合天天 | 日韩精品在线观看一区 | 欧美淫视频 | 自拍视频在线观看 | 久草青青 | 国产伦精品一区二区 | 成人一区二区三区久久精品嫩草 | 国产精品久久久久久久7电影 | 午夜免费福利在线 | 久久精选| 亚洲a级 | www.久久| 久操不卡 | 天天干com| 国产精品久久久久久久久久99 | 精品在线一区二区 | 欧美大片免费高清观看 | 亚洲伊人久久综合 | 久久精品国产亚洲精品 | 99精品网 | 夜夜骚 | 免费的黄色小视频 | 黄色毛片视频网站 | 精品国产欧美一区二区三区成人 | 精品久久久久久久久久久久久久 | 国产欧美精品一区二区三区 | 国产区免费视频 | 这里有精品视频 | 狠狠综合久久av一区二区小说 | 久久精品国产清自在天天线 | 日本成人黄色网址 | 99视频这里有精品 | 欧美视频免费在线观看 | 日韩欧美二区 | 国产美女在线播放 | 国产91亚洲精品久久久 | 日韩在线观看视频一区二区 |