題目列表(包括答案和解析)
已知等差數列{an}的首項為4,公差為4,其前n項和為Sn,則數列 {}的前n項和為( )
| A. | | B. | | C. | | D. | |
考點: | 數列的求和;等差數列的性質. |
專題: | 等差數列與等比數列. |
分析: | 利用等差數列的前n項和即可得出Sn,再利用“裂項求和”即可得出數列 { |
解答: | 解:∵Sn=4n+ ∴ ∴數列 { 故選A. |
點評: | 熟練掌握等差數列的前n項和公式、“裂項求和”是解題的關鍵. |
已知數列的前
項和為
,且
(
N*),其中
.
(Ⅰ) 求的通項公式;
(Ⅱ) 設 (
N*).
①證明: ;
② 求證:.
【解析】本試題主要考查了數列的通項公式的求解和運用。運用關系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到
,②由于
,
所以利用放縮法,從此得到結論。
解:(Ⅰ)當時,由
得
. ……2分
若存在由
得
,
從而有,與
矛盾,所以
.
從而由得
得
. ……6分
(Ⅱ)①證明:
證法一:∵∴
∴
∴.…………10分
證法二:,下同證法一.
……10分
證法三:(利用對偶式)設,
,
則.又
,也即
,所以
,也即
,又因為
,所以
.即
………10分
證法四:(數學歸納法)①當時,
,命題成立;
②假設時,命題成立,即
,
則當時,
即
即
故當時,命題成立.
綜上可知,對一切非零自然數,不等式②成立. ………………10分
②由于,
所以,
從而.
也即
已知函數=
.
(Ⅰ)當時,求不等式
≥3的解集;
(Ⅱ) 若≤
的解集包含
,求
的取值范圍.
【命題意圖】本題主要考查含絕對值不等式的解法,是簡單題.
【解析】(Ⅰ)當時,
=
,
當≤2時,由
≥3得
,解得
≤1;
當2<<3時,
≥3,無解;
當≥3時,由
≥3得
≥3,解得
≥8,
∴≥3的解集為{
|
≤1或
≥8};
(Ⅱ) ≤
,
當∈[1,2]時,
=
=2,
∴,有條件得
且
,即
,
故滿足條件的的取值范圍為[-3,0]
數列首項
,前
項和
滿足等式
(常數
,
……)
(1)求證:為等比數列;
(2)設數列的公比為
,作數列
使
(
……),求數列
的通項公式.
(3)設,求數列
的前
項和
.
【解析】第一問利用由得
兩式相減得
故時,
從而又
即
,而
從而 故
第二問中,
又
故
為等比數列,通項公式為
第三問中,
兩邊同乘以
利用錯位相減法得到和。
(1)由得
兩式相減得
故時,
從而 ………………3分
又 即
,而
從而 故
對任意
,
為常數,即
為等比數列………………5分
(2)
……………………7分
又故
為等比數列,通項公式為
………………9分
(3)
兩邊同乘以
………………11分
兩式相減得
已知數列是首項為
的等比數列,且滿足
.
(1) 求常數的值和數列
的通項公式;
(2) 若抽去數列中的第一項、第四項、第七項、……、第
項、……,余下的項按原來的順序組成一個新的數列
,試寫出數列
的通項公式;
(3) 在(2)的條件下,設數列的前
項和為
.是否存在正整數
,使得
?若存在,試求所有滿足條件的正整數
的值;若不存在,請說明理由.
【解析】第一問中解:由得
,,
又因為存在常數p使得數列為等比數列,
則即
,所以p=1
故數列為首項是2,公比為2的等比數列,即
.
此時也滿足,則所求常數
的值為1且
第二問中,解:由等比數列的性質得:
(i)當時,
;
(ii) 當時,
,
所以
第三問假設存在正整數n滿足條件,則,
則(i)當時,
,
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com