題目列表(包括答案和解析)
設橢圓 :
(
)的一個頂點為
,
,
分別是橢圓的左、右焦點,離心率
,過橢圓右焦點
的直線
與橢圓
交于
,
兩點.
(1)求橢圓的方程;
(2)是否存在直線 ,使得
,若存在,求出直線
的方程;若不存在,說明理由;
【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關系的運用。(1)中橢圓的頂點為,即
又因為
,得到
,然后求解得到橢圓方程(2)中,對直線分為兩種情況討論,當直線斜率存在時,當直線斜率不存在時,聯立方程組,結合
得到結論。
解:(1)橢圓的頂點為,即
,解得
,
橢圓的標準方程為
--------4分
(2)由題可知,直線與橢圓必相交.
①當直線斜率不存在時,經檢驗不合題意. --------5分
②當直線斜率存在時,設存在直線為
,且
,
.
由得
, ----------7分
,
,
=
所以,
----------10分
故直線的方程為
或
即或
頂點在坐標原點,對稱軸即坐標軸又過點(-2,3)的拋物線方程是( )
A.
B.
C.或
D.或
A.
B.
C.或
D.或
設定義在(0,+)上的函數
(Ⅰ)求的最小值;
(Ⅱ)若曲線在點
處的切線方程為
,求
的值。
【解析】 (Ⅰ)因,故
,取等號的條件是
,即
。
(Ⅱ)因,由
,求得
,又由
,可得
,解得
(08年內江市一模) 設函數是定義在
上的奇函數,且滿足
對一切
都成立,又當
時,
,則下列四個命題:①函數
是以4為周期的周期函數;②當
時,
;③函數
圖像的一條對稱軸的方程為
;④當
時,
;
其中正確的命題為_____________(填序號即可).
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com