日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

(Ⅱ)求四邊形面積的最大值. 查看更多

 

題目列表(包括答案和解析)

如圖,平行四邊形ABCD中,AB⊥BD,AB=2,數(shù)學公式,沿BD將△BCD折起,使二面角A-BD-C是大小為銳角α的二面角,設C在平面ABD上的射影為O.

(1)當α為何值時,三棱錐C-OAD的體積最大?最大值為多少?
(2)當AD⊥BC時,求α的大小.

查看答案和解析>>

如圖,平行四邊形ABCD中,AB⊥BD,AB=2,,沿BD將△BCD折起,使二面角A-BD-C是大小為銳角α的二面角,設C在平面ABD上的射影為O.

(1)當α為何值時,三棱錐C-OAD的體積最大?最大值為多少?
(2)當AD⊥BC時,求α的大小.

查看答案和解析>>

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=4,BC=3,∠BAD=120°,E為BC上一動點(不與B重合),作EF⊥AB于F,F(xiàn)E的延長線交DC的延長線于點G,設BE=x,△DEF的面積為S.
(1)求證:△BEF∽△CEG;
(2)求用x表示S的函數(shù)關系式,并寫出x的取值范圍;
(3)當E運動到何處時,S有最大值,最大值是多少?

查看答案和解析>>

如圖,在平行四邊形ABCD中,AB=4,BC=3,∠BAD=120°,E為BC上一動點(不與B重合),作EF⊥AB于F,F(xiàn)E的延長線交DC的延長線于點G,設BE=x,△DEF的面積為S.
(1)求證:△BEF∽△CEG;
(2)求用x表示S的函數(shù)關系式,并寫出x的取值范圍;
(3)當E運動到何處時,S有最大值,最大值是多少?

查看答案和解析>>

如圖,在平行四邊形ABCD中,AB=4,BC=3,∠BAD=120°,E為BC上一動點(不與B重合),作EF⊥AB于F,F(xiàn)E的延長線交DC的延長線于點G,設BE=x,△DEF的面積為S.
(1)求證:△BEF△CEG;
(2)求用x表示S的函數(shù)關系式,并寫出x的取值范圍;
(3)當E運動到何處時,S有最大值,最大值是多少?

查看答案和解析>>

一、學科網(wǎng)(Zxxk.Com)

1.C       2.A      3.D      4.C       5.A      6.B       7.A      8.C       9.D      10.C 學科網(wǎng)(Zxxk.Com)

11.D     12.B學科網(wǎng)(Zxxk.Com)

1~5略學科網(wǎng)(Zxxk.Com)

6.學科網(wǎng)(Zxxk.Com)

7.解:學科網(wǎng)(Zxxk.Com)

       學科網(wǎng)(Zxxk.Com)

       學科網(wǎng)(Zxxk.Com)

其展開式中含的項是:,系數(shù)等于學科網(wǎng)(Zxxk.Com)

8.解:根據(jù)題意:學科網(wǎng)(Zxxk.Com)

9.解:,橢圓離心率為學科網(wǎng)(Zxxk.Com)

10.解:依腰意作出圖形.取中點,連接,則,不妨設四面體棱長為2,則是等腰三角形,必是銳角,就是所成的角,學科網(wǎng)(Zxxk.Com)

學科網(wǎng)(Zxxk.Com)

11.解:已知兩腰所在直線斜率為1,,設底邊所在直線斜率為,已知底角相等,由到角公式得:學科網(wǎng)(Zxxk.Com)

學科網(wǎng)(Zxxk.Com)

       ,解得學科網(wǎng)(Zxxk.Com)

       由于等腰三角底邊過點(,0)則只能取學科網(wǎng)(Zxxk.Com)

12.解:如圖,正四面體中,學科網(wǎng)(Zxxk.Com)

       學科網(wǎng)(Zxxk.Com)

中心,連,此四面體內切球與外接球具有共同球心必在上,并且等于內切球半徑,等于外接球半徑.記面積為,則學科網(wǎng)(Zxxk.Com)

,從而學科網(wǎng)(Zxxk.Com)

二、學科網(wǎng)(Zxxk.Com)

13..解:共線學科網(wǎng)(Zxxk.Com)

14..解:,曲線在(1,0)處的切線與直線垂直,則的傾角是學科網(wǎng)(Zxxk.Com)

15.曲線      ①,化作標準形式為,表示橢圓,由于對稱性.取焦點,過且傾角是135°的弦所在直線方程為:,即②,聯(lián)立式①與式②.消去y,得:,由弦長公式得:

16.充要條件①:底面是正三角形,頂點在底面的射影恰是底面的中心.

充要條件②:底面是正三角形.且三條側棱長相等,

充要條件③:底面是正三角形,且三個側面與底面所成角相等.

再如:底面是正三角形.且三條側棱與底面所成角相等;三條側棱長相等,且三個側面與底面所成角相等;三個側面與底面所成角相等,三個側面兩兩所成二面角相等.

三、

17.解:,則.由正弦定理得

      

      

      

18.(1)證:已知是正三棱柱,取中點中點,連,則兩兩垂直,以軸建立空間直角坐標系,又已知

,則,又因相交,故

(2)解:由(1)知,是面的一個法向量.

             

,設是面的一個法向量,則①,②,取,聯(lián)立式①、②解得,則

              二面角是銳二面角,記其大小為.則

             

二面角的大小,亦可用傳統(tǒng)方法解(略).

19.解:已知各投保學生是否出險相互獨立,且每個投保學生在一年內出險的概率都是,記投保的5000個學生中出險的人數(shù)為,則(5000,0.004)即服從二項分布.

(1)記“保險公司在學平險險種中一年內支付賠償金至少5000元”為事件A,則

             

             

(2)該保險公司學平險除種總收入為元=25萬元,支出成本8萬元,支付賠償金5000元=0.5萬元,盈利萬元.

~知,

進而萬元.

故該保險公司在學平險險種上盈利的期望是7萬元.

20.解(1):由,即

              ,而

由表可知,上分別是增函數(shù),在上分別是減函數(shù).

.   

(2)時,等價于,記

,因

上是減函數(shù),,故

時,就是,顯然成立,綜上可得的取值范圍是:

22.解:(1)由條件可知橢圓的方程是:

             

                ①,直線的方程是            ②,

聯(lián)立式①、②消去并整理得,由此出發(fā)時,是等比數(shù)列,

(2)由(1)可知,.當時,

      

      

       是遞減數(shù)列

       對恒成立

       時,是遞減數(shù)列.

21.解(1):,由解得函數(shù)定義域呈

              ,由解得,列表如下:

0

0

極大

極小

              解得,進而求得中點

              己知在直線上,則

       (2)

,則,點到直線的距離

,由于直線與線段相交于,則,則

,則

其次,,同理求得的中離:

,即,由

時,

,當時,.注意到,由對稱性,時仍有

 

,進而

故四邊形的面積:

時,

 


同步練習冊答案
主站蜘蛛池模板: 精品国产91亚洲一区二区三区www | 日韩精品一区二区三区在线播放 | 在线播放91| av免费在线播放 | 97香蕉久久国产超碰青草软件 | 日韩另类| 在线亚洲精品 | 欧美一区二区免费 | 美国黄色毛片女人性生活片 | 日韩成人精品视频在线观看 | 国产又粗又猛视频免费 | 亚洲高清在线观看 | 热久久这里只有精品 | 久久国内精品 | 亚洲成人毛片 | 成人福利在线 | 午夜精品久久久久久久星辰影院 | 亚洲午夜精品一区二区三区他趣 | 国产亚洲成av人片在线观看桃 | 香蕉在线影院 | 日韩精品一区二 | 欧美福利视频 | 欧美亚洲一区二区三区 | 欧美日韩精品一区二区三区 | 秋霞在线一区 | 国产精品久久久久影院色老大 | 日韩精品一区二区三区老鸭窝 | 亚洲区在线 | 日韩快播电影网 | 黄色高清视频在线观看 | 欧美人成在线 | 精品日韩欧美一区二区在线播放 | 日韩欧美一区二区三区 | 国产不卡一区二区三区在线观看 | 青青av | 黄片毛片 | 精品国产31久久久久久 | 亚洲免费成人 | 成人精品在线播放 | 欧美日韩国产一区二区 | 色网址在线 |