題目列表(包括答案和解析)
(本小題滿分12分)
已知函數;
(1)求; (2)求
的最大值與最小值.
【解析】第一問利用導數的運算法則,冪函數的導數公式,可得。
第二問中,利用第一問的導數,令導數為零,得到
然后結合導數,函數的關系判定函數的單調性,求解最值即可。
已知四棱錐P-ABCD的底面ABCD是邊長為2的正方形,PD⊥底面ABCD,E,F分別為棱BC、AD的中點.
(1)求證:DE∥平面PFB;
(2)已知二面角P-BF-C的余弦值為,求四棱錐P-ABCD的體積.
【解析】(1)證:DE//BF即可;
(2)可以利用向量法根據二面角P-BF-C的余弦值為,確定高PD的值,即可求出四棱錐的體積.也可利用傳統方法直接作出二面角的平面角,求高PD的值也可.在找平面角時,要考慮運用三垂線或逆定理.
已知函數,曲線
在點
處的切線為
,若
時,
有極值.
(1)求的值;
(2)求在
上的最大值和最小值.
【解析】(1)根據可建立關于a,b,c的三個方程,解方程組即可.
(2)在(1)的基礎上,利用導數列表求極值,最值即可.
商場銷售某種商品的經驗表明,該商品每日的銷售量(單位:千克)與銷售價格
(單位:元/千克)滿足關系式
,其中
,
為常數,已知銷售價格為5元/千克時,每日可售出該商品11千克.
(1) 求的值;
(2) 若商品的成品為3元/千克, 試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大
【解析】(1)利用銷售價格為5元/千克時,每日可售出該商品11千克.把x=5,y=11代入,解關于a的方程即可求a..
(2)在(1)的基礎上,列出利潤關于x的函數關系式,
利潤=銷售量(銷售單價-成品單價),然后利用導數求其最值即可.
已知函數在
與
時都取得極值.
(1)求的值及函數
的單調區間;www.7caiedu.cn
(2)若對,不等式
恒成立,求
的取值范圍.
【解析】根據與
是
的兩個根,可求出a,b的值,然后利用導數確定其單調區間即可.
(2)此題本質是利用導數其函數f(x)在區間[-1,2]上的最大值,然后利用,即可解出c的取值范圍.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com