題目列表(包括答案和解析)
(本題滿分15分)
已知函數(shù)f (x)=x 2+ax ,且對任意的實數(shù)x都有f (1+x)=f (1-x) 成立.
(1)求實數(shù) a的值;
(2)利用單調(diào)性的定義證明函數(shù)f(x)在區(qū)間[1,+∞(本題滿分15分)已知a∈R,函數(shù)f (x) =x3 +
ax2 + 2ax (x∈R). (Ⅰ)當(dāng)a = 1時,求函數(shù)f (x)的單調(diào)遞增區(qū)間; (Ⅱ)函數(shù) f (x) 能否在R上單調(diào)遞減,若是,求出 a的取值范圍;若不能,請說明理由; (Ⅲ)若函數(shù)f (x)在[-1,1]上單調(diào)遞增,求a的取值范圍.
(08年浙江卷理)(本題15分)已知是實數(shù),函數(shù)
.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè)為
在區(qū)間
上的最小值.
(i)寫出的表達式;
(ii)求的取值范圍,使得
.
(08年浙江卷理)(本題15分)已知是實數(shù),函數(shù)
.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè)為
在區(qū)間
上的最小值.
(i)寫出的表達式;
(ii)求的取值范圍,使得
.
一、選擇題:本大題共10小題,每小題5分,共50分.
題號
1
2
3
4
5
6
7
8
9
10
解答
D
D
A
B
D
C
C
B
D
D
二、填空題:本大題共7小題,每小題4分,共28分
11. 負
12.
13. 7 14.
15. 4010
16.
17.若他不放棄這5道題,則這5道題得分的期望為:
三、解答題:本大題共5小題,共72分.解答應(yīng)寫出文字說明,證明過程或演算步驟.
18.解:(Ⅰ)①,②,③,④處的數(shù)值分別為:3,0.025,0.100,1.…………4分
(Ⅱ)
…………………………………………………………………………8分
(Ⅲ)(?)120分及以上的學(xué)生數(shù)為:(0.275+0.100+0.050)×5000=2125;
(?)平均分為:
(?)成績落在[126,150]中的概率為:
…………………………………………………………………………14分
19.解:(Ⅰ) 由三視圖可知,四棱錐的底面是邊長為1的正方形,
側(cè)棱底面
,且
.
∴,
即四棱錐的體積為
.
………………………………4分
(Ⅱ) 不論點在何位置,都有
.
證明如下:連結(jié),∵
是正方形,∴
.
∵底面
,且
平面
,∴
.
又∵,∴
平面
.
∵不論點在何位置,都有
平面
.
∴不論點在何位置,都有
. ………………………………8分
(Ⅲ) 解法1:在平面內(nèi)過點
作
于
,連結(jié)
.
∵
,
,
,
∴Rt△≌Rt△
,
從而△≌△
,∴
.
∴為二面角
的平面角.
在Rt△中,
,
又,在△
中,由余弦定理得
,
∴,即二面角
的大小為
. …………………14分
解法2:如圖,以點為原點,
所在的直線分別為
軸建立空間直角
坐標系. 則,從而
,
,
,
.
設(shè)平面
和平面
的法向量分別為
,
,
由,取
.
由,取
.
設(shè)二面角的平面角為
,
則,
∴,即二面角
的大小為
. …………………14分
20.解:(Ⅰ)令①
令 ②
由①、②知,,又
是
上的單調(diào)函數(shù),
. ………………………………………………………………………4分
(Ⅱ),
.
,
…………………………………………………………………10分
(Ⅲ)令,則
……………………12分
對
都成立
…………………………………………………………………………………15分
21.解:(Ⅰ)設(shè)B(,
),C(
,
),BC中點為(
),F(2,0).
則有.
兩式作差有
.
設(shè)直線BC的斜率為,則有
. (1)
因F2(2,0)為三角形重心,所以由,得
由得
,
代入(1)得.
直線BC的方程為.
…………………………………………7分
(Ⅱ)由AB⊥AC,得 (2)
設(shè)直線BC方程為,得
,
代入(2)式得,,
解得或
故直線過定點(0,
. …………………………………………14分
22.解:(Ⅰ)
.
當(dāng)時,
.從而有
.…………………5分
(Ⅱ)設(shè)P,切線
的傾斜角分別為
,斜率分別為
.則
.
由切線與
軸圍成一個等腰三角形,且
均為正數(shù)知,該三角形為鈍角三角形,
或
.又
.從而,
.
…………………………………………………………………………………10分
(Ⅲ)令
;
.
.
又.
.
當(dāng)時,即
時,曲線
與曲線
無公共點,故方程
無實數(shù)根;
當(dāng)時,即
時,曲線
與曲線
有且僅有1個公共點,故方程
有且僅有1個實數(shù)根;
當(dāng)時,即
時,曲線
與曲線
有2個交點,故方程
有2個實數(shù)根.
…………………………………………………………………15分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com