日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

①焦距長為,②短軸長為,③離心率,④若以AB方向為x軸正方向.F為坐標原點.則與F對應的準線方程為.其中正確的序號為 . 查看更多

 

題目列表(包括答案和解析)

已知離心率為
4
5
的橢圓的中心在原點,焦點在x軸上,雙曲線以橢圓的長軸為實軸,短軸為虛軸,且焦距為2
34

(I)求橢圓及雙曲線的方程;
(Ⅱ)設橢圓的左、右頂點分別為A,B,在第二象限內取雙曲線上一點P,連結BP交橢圓于點M,連結PA并延長交橢圓于點N,若
BM
=
MP
.求四邊形ANBM的面積.
精英家教網

查看答案和解析>>

已知離心率為的橢圓的中心在原點,焦點在x軸上,雙曲線以橢圓的長軸為實軸,短軸為虛軸,且焦距為2
(I)求橢圓及雙曲線的方程;
(Ⅱ)設橢圓的左、右頂點分別為A,B,在第二象限內取雙曲線上一點P,連結BP交橢圓于點M,連結PA并延長交橢圓于點N,若=.求四邊形ANBM的面積.

查看答案和解析>>

已知離心率為的橢圓的中心在遠點,焦點在x軸上.雙曲線以橢圓的長軸為實軸,短軸為虛軸,且焦距為

(1)求橢圓及雙曲線的方程;

(2)設橢圓的左、右定點分別為A、B,在第二象限內取雙曲線上一點P,連接BP交橢圓于點M,連接PA并延長交橢圓于點N,若求四邊形ANBM的面積.

查看答案和解析>>

已知離心率為的橢圓的中心在遠點,焦點在x軸上.雙曲線以橢圓的長軸為實軸,短軸為虛軸,且焦距為

(I)求橢圓及雙曲線的方程;

(2)設橢圓的左、右定點分別為A、B,在第二象限內取雙曲線上一點P,連接BP交橢圓于點M,連接PA并延長交橢圓于點N,若求四邊形ANBM的面積.

查看答案和解析>>

已知的離心率為,直線l:x-y=0與以原點為圓心,以橢圓C1的短半軸長為半徑的圓相切,曲線C2以x軸為對稱軸.
(1)求橢圓C1的方程;
(2)設橢圓C1的左焦點為F1,右焦點F2,直線l1過點F1且垂直于橢圓的長軸,曲線C2上任意一點M到l1距離與MF2相等,求曲線C2的方程.
(3)若A(x1,2),C(x,y),是C2上不同的點,且AB⊥BC,求y的取值范圍.

查看答案和解析>>

1.A 2.B 3.D 4.C 5.B 6.D 7.C 8.A 9.B 10.C(文、理) 

11.B(文理) 12.C 13.-1 14.-2 15.①③④

16.①③④

  17.設:該工人在第一季度完成任務的月數,:該工人在第一季度所得獎金數,則的分布列如下:

  

  

  

  

  ∴ 

      

  答:該工人在第一季度里所得獎金的期望為153.75元.

  18.(1)∵   ∴ ,且p=1,或

  若是,且p=1,則由

  ∴ ,矛盾.故不可能是:,且p=1.由,得

  又,∴ 

 。2)∵ 

  ∴ 

  

  當k≥2時,.  ∴ n≥3時有

  

   

  ∴ 對一切有:

 。3)∵ 

  ∴ .  

  故

  ∴ 

  又

  ∴ 

  故 

  19.(甲)(1)∵ 側面底面ABC,  ∴ 在平面ABC上的射影是AC

  與底面ABC所成的角為∠

  ∵ , ∴ ∠=45°.

 。2)作ACO,則⊥平面ABC,再作OEABE,連結,則,所以∠就是側面與底面ABC所成二面角的平面角.

  在Rt△中,

  ∴ .  60°.

 。3)設點C到側面的距離為x

  ∵ ,

  ∴ .(*)

  ∵ ,,  ∴ 

  又,∴ 

  又. ∴ 由(*)式,得.∴ 

  (乙)(1)證明:如圖,以O為原點建立空間直角坐標系.

  設AEBFx,則a,0,a),Fa-x,a,0),(0,a,a),Ea,x,0),

  ∴ (-xa,-a),

  a,x-a,-a).

  ∵ ,

  ∴ 

 。2)解:記BFxBEy,則xya,則三棱錐的體積為

  

  當且僅當時,等號成立,因此,三棱錐的體積取得最大值時,

  過BBDBFEFD,連結,則

  ∴ ∠是二面角的平面角.在Rt△BEF中,直角邊,BD是斜邊上的高,  ∴ 

  在Rt△中,tan∠.故二面角的大小為

  20.∵ k=0不符合題意, ∴ k≠0,作直線

  ,則

  ∴ 滿足條件的

  

  由消去x,得

  ,

  .(*)

  設,、,則 

  又

  ∴ 

  故AB的中點. ∵ lE, ∴ ,即 

  代入(*)式,得

  

  21.(1).當x≥2時,

  

    

    

    

    

  ∴ ,且

  ∵ 

  ∴ 當x=12-x,即x=6時,(萬件).故6月份該商品的需求量最大,最大需求量為萬件.

  (2)依題意,對一切{1,2,…,12}有

  ∴ x=1,2,…,12).

  ∵ 

      

  ∴ . 故 p≥1.14.故每個月至少投放1.14萬件,可以保證每個月都保證供應.

  22.(1)按題意,得

  ∴  即 

  又

  ∴ 關于x的方程

  在(2,+∞)內有二不等實根x、關于x的二次方程

在(2,+∞)內有二異根、

  

  故 

 。2)令,則

  ∴ 

  (3)∵ ,

  ∴ 

       

  ∵ ,  ∴ 當,4)時,;當(4,)是

  又在[,]上連接,

  ∴ 在[,4]上遞增,在[4,]上遞減.

  故 

  ∵ ,

  ∴ 0<9a<1.故M>0. 若M≥1,則

  ∴ ,矛盾.故0<M<1.

 


同步練習冊答案
主站蜘蛛池模板: 狠狠操天天操 | 久久久久国产精品视频 | 国产超碰人人模人人爽人人添 | 国产在线中文字幕 | 在线观看视频一区二区 | 国产精品国产成人国产三级 | 午夜精品久久久久久久 | 国产精品视频一二三区 | 国产精品久久久99 | 欧美一区二区 | 日韩美一级 | 男女黄色免费网站 | 成人在线视频观看 | 久久精品在线观看视频 | 日本久久网 | 日本久久精品视频 | 欧美日韩国产免费一区二区三区 | 亚洲日韩欧美一区二区在线 | 白浆视频在线观看 | 国产一级大片 | 亚洲第一中文字幕 | 艹逼视频在线免费观看 | 欧美中文字幕在线观看 | 亚洲毛片在线观看 | 青草视频网站 | 婷婷精品 | 一级毛片国产 | 国产一区久久久 | 亚洲一区二区免费在线观看 | 黄色一级视屏 | 国产色网| 欧美久久一级特黄毛片 | 日韩av一区二区三区在线观看 | 国产黑人在线 | www婷婷av久久久影片 | 国内精品视频 | 三级精品 | 日本xxww视频免费 | 欧美成人综合 | 国产精品毛片一区二区 | 午夜免费片 |