日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

即存在①當(dāng)時(shí).有,② 當(dāng).時(shí).有成立. 查看更多

 

題目列表(包括答案和解析)

設(shè),  

(1)當(dāng)時(shí),求曲線處的切線方程;

(2)如果存在,使得成立,求滿足上述條件的最大整數(shù)

(3)如果對任意的,都有成立,求實(shí)數(shù)的取值范圍.

【解析】(1)求出切點(diǎn)坐標(biāo)和切線斜率,寫出切線方程;(2)存在轉(zhuǎn)化解決;(3)任意的,都有成立即恒成立,等價(jià)于恒成立

 

查看答案和解析>>

 已知函數(shù)的一個(gè)零點(diǎn),又 處有極值,在區(qū)間上是單調(diào)的,且在這兩個(gè)區(qū)間上的單調(diào)性相反.(1)求的取值范圍;(2)當(dāng)時(shí),求使成立的實(shí)數(shù)的取值范圍.

從而    或

所以存在實(shí)數(shù),滿足題目要求.……………………12分

 

 

 

 

 

 

 

查看答案和解析>>

已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為d,為其前n項(xiàng)和,且滿足,.?dāng)?shù)列滿足,為數(shù)列的前n項(xiàng)和.

(1)求數(shù)列的通項(xiàng)公式和數(shù)列的前n項(xiàng)和

(2)若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請說明理由.

【解析】第一問利用在中,令n=1,n=2,

   即      

解得,, [

時(shí),滿足

第二問,①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時(shí)取得.

此時(shí) 需滿足.  

②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時(shí)取得最小值-6.

此時(shí) 需滿足

第三問

     若成等比數(shù)列,則

即.

,可得,即

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

時(shí),滿足

(2)①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時(shí)取得.

此時(shí) 需滿足.  

②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時(shí)取得最小值-6.

此時(shí) 需滿足

綜合①、②可得的取值范圍是

(3)

     若成等比數(shù)列,則

即.

,可得,即

,且m>1,所以m=2,此時(shí)n=12.

因此,當(dāng)且僅當(dāng)m=2, n=12時(shí),數(shù)列中的成等比數(shù)列

 

查看答案和解析>>

已知,函數(shù)

(1)當(dāng)時(shí),求函數(shù)在點(diǎn)(1,)的切線方程;

(2)求函數(shù)在[-1,1]的極值;

(3)若在上至少存在一個(gè)實(shí)數(shù)x0,使>g(xo)成立,求正實(shí)數(shù)的取值范圍。

【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)時(shí),  又    所以函數(shù)在點(diǎn)(1,)的切線方程為;(2)中令   有 

對a分類討論,和得到極值。(3)中,設(shè),依題意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  當(dāng)時(shí),  又    

∴  函數(shù)在點(diǎn)(1,)的切線方程為 --------4分

(Ⅱ)令   有 

①         當(dāng)時(shí)

(-1,0)

0

(0,

,1)

+

0

0

+

極大值

極小值

的極大值是,極小值是

②         當(dāng)時(shí),在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

綜上所述   時(shí),極大值為,無極小值

時(shí)  極大值是,極小值是        ----------8分

(Ⅲ)設(shè)

求導(dǎo),得

    

在區(qū)間上為增函數(shù),則

依題意,只需,即 

解得  (舍去)

則正實(shí)數(shù)的取值范圍是(

 

查看答案和解析>>

已知函數(shù)

(1)若函數(shù)在其定義域內(nèi)為單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍。

(2)若函數(shù),若在[1,e]上至少存在一個(gè)x的值使成立,求實(shí)數(shù)的取值范圍。

【解析】第一問中,利用導(dǎo)數(shù),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091131067338626240_ST.files/image003.png">在其定義域內(nèi)的單調(diào)遞增函數(shù),所以 內(nèi)滿足恒成立,得到結(jié)論第二問中,在[1,e]上至少存在一個(gè)x的值使成立,等價(jià)于不等式 在[1,e]上有解,轉(zhuǎn)換為不等式有解來解答即可。

解:(1)

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091131067338626240_ST.files/image003.png">在其定義域內(nèi)的單調(diào)遞增函數(shù),

所以 內(nèi)滿足恒成立,即恒成立,

亦即

即可  又

當(dāng)且僅當(dāng),即x=1時(shí)取等號,

在其定義域內(nèi)為單調(diào)增函數(shù)的實(shí)數(shù)k的取值范圍是.

(2)在[1,e]上至少存在一個(gè)x的值使成立,等價(jià)于不等式 在[1,e]上有解,設(shè)

 上的增函數(shù),依題意需

實(shí)數(shù)k的取值范圍是

 

查看答案和解析>>


同步練習(xí)冊答案
主站蜘蛛池模板: a视频在线观看 | 久久福利 | 一区二区三区四区精品 | 国产精品视频免费观看 | 亚洲日韩欧美一区二区在线 | 山外人精品| 久久综合狠狠综合久久综合88 | 国产黄a | 欧美午夜视频 | 日韩在线免费 | 精一区二区| 黄色99| 欧美精品在欧美一区二区少妇 | 在线亚洲成人 | 无码少妇一区二区三区 | 太子妃好紧皇上好爽h | 亚洲成人黄色网 | 91极品国产 | 在线欧美色 | 久久99深爱久久99精品 | 日韩久久一区二区 | 啪啪毛片| 色播视频在线观看 | av免费网站在线观看 | 欧美在线视频二区 | 成人一级 | av片在线观看 | 欧美精品网站 | 日本一区二区三区视频在线 | 99精品一级欧美片免费播放 | 久草福利资源 | 国产视频一区在线 | 日韩三级中文字幕 | 亚洲精品一区二区三区中文字幕 | 国精产品一区一区三区在线观看 | 天天看天天干 | 久久精品国产亚洲a∨蜜臀 性视频网站免费 | 超碰在线99| 久久免费视频国产 | 亚洲福利在线播放 | 欧美午夜视频在线观看 |