日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

21. 查看更多

 

題目列表(包括答案和解析)

(本題12分)已知向量

    (1)求cos ()的值;

    (2)若0<,<0,且sin=,求sin

查看答案和解析>>

(本題12分)已知數列是等差數列,a2 = 3,a5 = 6,數列的前n項和是Tn,且Tn +

(1)求數列的通項公式與前n項的和Mn

(2)求數列的通項公式;

(3)記cn =,求的前n項和Sn

查看答案和解析>>

(本題12分)在如圖所示的四面體ABCD中,AB、BC、CD兩兩互相垂直,且BC=CD=1。(1)求證:平面ACD⊥平面ABC;(2)求二面角C-AB-D的大小。

查看答案和解析>>

(本題12分)設函數的定義域為A,集合

(1)求;  (2)若,求的取值范圍。

查看答案和解析>>

(本題12分)某研究所計劃利用“神七”宇宙飛船進行新產品搭載實驗,計劃搭載新產品A、B,該所要根據該產品的研制成本、產品重量、搭載實驗費用和預計產生收益來決定具體安排,通過調查,有關數據如下表:

產品A(件)

產品B(件)

研制成本、搭載費用之和(萬元)

20

30

計劃最大資金額300萬元

產品重量(千克)

10

5

最大搭載重量110千克

預計收益(萬元)

80

60

如何安排這兩種產品的件數進行搭載,才能使總預計收益達到最大,最大收益是多少?

查看答案和解析>>

一、選擇題(本大題共12小題,每題5分,共60分)

1.A    2.B    3.C    4.A    5.D    6.C    7.B    8.C    9.A

10.B   11.(理)C(文)B       12.D

二、填空題(本大題共4小題,每題4分,共16分)

13.                            14.②③                  15.47                     16.□

三、解答題(本大題共6小題,共計76分)

17.解:(1)依題意函數的圖象按向量平移后得

                                                ………………………2分

       即=                                                ………………………4分

       又

       比較得a=1,b=0                                                                     ………………………6分

   (2)

       =                                                              ………………………9分

      

      

       ∴的單調增區間為[]          ……………………12分

18.解:

   (1)設連對的個數為y,得分為x

       因為y=0,1,2,4,所以x=0,2,4,8.

      

<strike id="wqeac"><rt id="wqeac"></rt></strike>
  • <tfoot id="wqeac"><input id="wqeac"></input></tfoot>
    <tfoot id="wqeac"><input id="wqeac"></input></tfoot>

    x

    0

    2

    4

    8

       

           于是x的分布列為

    • <strike id="wqeac"></strike>
    • <ul id="wqeac"></ul>
    • ……9分

       

       

         (2)Ex=0×+2×+4×+8×=2

             即該人得分的期望為2分。                                                     ……………………12分

         (文)

         (1)從口袋A中摸出的3個球為最佳摸球組合即為從口袋A中摸出2個紅球和一個黑球

             其概念為                                                     ……………………6分

         (2)由題意知:每個口袋中摸球為最佳組合的概率相同,從5個口袋中摸球可以看成5

             次獨立重復試驗,故所求概率為………………………12分

      19.解法一:以D為原點,DA,DC,DD1

             所在直線分別為x軸、y軸、z軸,建

             立空間直角坐標系D―xyz,則

             A(a,0,0)、B(a,2a,0)、

             C(0,2a,0)、A1(a,0,a)、

             D1(0,0,a)。E、P分別是BC、A1D1

             的中點,M、N分別是AE、CD1的中點

             ∴……………………………………2分

         (1)⊥面ADD1A1

             而=0,∴,又∵MN面ADD1A1,∴MN∥面ADD1A1;………4分

         (2)設面PAE的法向量為,又

             則又

             ∴=(4,1,2),又你ABCD的一個法向量為=(0,0,1)

             ∴

             所以二面角P―AE―D的大小為                        ………………………8分

         (3)設為平面DEN的法向量

             又=(),=(0,a,),,0,a)

             ∴所以面DEN的一個法向量=(4,-1,2)

             ∵P點到平面DEN的距離為

             ∴

            

             所以                                              ……………………12分

             解法二:

         (1)證明:取CD的中點為K,連接

             ∵M,N,K分別為AE,CD1,CD的中點

             ∴MK∥AD,ND∥DD1,∴MK∥面ADD1A1,NK∥面ADD1A1

             ∴面MNK∥面ADD1A1,∴MN∥面ADD1A1,                      ………………………4分

         (2)設F為AD的中點,∵P為A1D1的中點

             ∴PF∥DD1,PF⊥面ABCD

             作FH⊥AE,交AE于H,連結PH,則由三垂

             線定理得AE⊥PH,從而∠PHF為二面角

             P―AE―D的平面角。

             在Rt△AAEF中,AF=,EF=2,AE=,

             從而FH=

             在Rt△PFH中,tan∠PHF=

             故:二面角P―AE―D的大小為arctan

         (3)

             作DQ⊥CD1,交CD1于Q,

             由A1D1⊥面CDD1C1,得A1D1⊥DQ,∴DQ⊥面BCD1A1。

             在Rt△CDD1中,

             ∴  ……………………12分

      20.解:(理)

         (1)函數的定義域為(0,+

             當a=-2e時,              ……………………2分

             當x變化時,,的變化情況如下:

      (0,

      ,+

      0

      極小值

             由上表可知,函數的單調遞減區間為(0,

             單調遞增區間為(,+

             極小值是)=0                                                            ……………………6分

         (2)由           ……………………7分

             又函數為[1,4]上單調減函數,

             則在[1,4]上恒成立,所以不等式在[1,4]上恒成立。

             即在,[1,4]上恒成立                                           ……………………10分

             又=在[1,4]上為減函數

             ∴的最小值為

             ∴                                                                            ……………………12分

        (文)(1)∵函數在[0,1]上單調遞增,在區間上單調遞減,

             ∴x=1時,取得極大值,

             ∴

             ∴4-12+2a=0a=4                                                                 ………………………4分

         (2)A(x0,f(x0))關于直線x=1的對稱點B的坐標為(2- x0,f(x0

            

             =

             ∴A關于直線x=1的對稱點B也在函數的圖象上            …………………8分

         (3)函數的圖象與函數的圖象恰有3個交點,等價于方程

             恰有3個不等實根,

            

             ∵x=0是其中一個根,

             ∴方程有兩個非零不等實根

                                             ……………………12分

      21.解:(理)(1)由已知得:

                    

             ∵                                                     ①…………………2分

             ∴                                                                 ②

             ②―①

             即

             又

             ∴                                                                      ……………………5分

             ∴{an}成等差數列,且d=1,又a1=1,∴…………………6分

         (2)∵

             ∴

             ∴                   …………………8分

             兩式相減

            

             ∴                                                          ……………………10分

             ∴               ……………………12分

         (文)(1)由已知得:

            

             ∴

             ∵                                                     ①…………………2分

             ∴                                                                 ②

             ②―①

             即

             又

             ∴                                                                      ……………………5分

             ∴{an}成等差數列,且d=1,又a1=1,∴…………………6分

         (2)∵

             ∴

             ∴                   …………………8分

             兩式相減

            

             ∴                                                          ……………………10分

             ∴               ……………………12分

       

      22.解:(1)

             設M(x,y)是曲線C上任一點,因為PM⊥x軸,

             所以點P的坐標為(x,3y)                                                   …………………2分

             點P在橢圓,所以

             因此曲線C的方程是                                           …………………5分

         (2)當直線l的斜率不存在時,顯然不滿足條件

             所以設直線l的方程為與橢圓交于Ax1y1),Bx2y2),N點所在直線方

             程為

             ,由

                                                     ……………………6分

             由△=………………8分

             ∵,所以四邊形OANB為平行四邊形               …………………9分

             假設存在矩形OANB,則

            

             所以

             即                                                                   ……………………11分

             設N(),由,得

             ,

             即N點在直線

             所以存在四邊形OANB為矩形,直線l的方程為 ……………………14分

      主站蜘蛛池模板: 久久久久99精品国产片 | 成人福利在线 | 可以免费看av的网址 | 国产中文字幕一区二区三区 | 亚洲国产精品一区 | 欧美一级在线观看 | 国产精品国产精品国产专区不卡 | 亚洲国产成人91精品 | 黑人巨大精品欧美一区二区免费 | 日韩成人久久 | 久久精品久久久 | 婷婷激情五月 | 日韩大片免费观看视频播放 | 91一级 | 91精品中文字幕一区二区三区 | 天堂福利影院 | xxxx性欧美| 特黄特黄a级毛片免费专区 亚洲国产成人在线视频 | 日韩精品三区 | 久久极品 | 国产精品久久久久毛片软件 | 国产艳妇av视国产精选av一区 | 我看午夜视频 | 久久久久性 | 999久久国产 | 亚洲免费一级片 | 久久这里有精品视频 | 久久久一区二区 | 成人在线网站 | 人人草在线视频 | 亚洲精品国产综合区久久久久久久 | a级片网站| 亚洲精品一区在线观看 | 国产涩涩| 久国产精品视频 | 黄色大片免费网址 | 日韩免费精品视频 | 成人黄色91 | 国产伦精品一区二区三区照片91 | 欧美a√ | 9久9久9久女女女九九九一九 |