日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

18.如圖.在四棱錐P―ABCD中.底面ABCD是正方形.側面PAD⊥底面ABCD.且PA=PD=若E.F分別為PC.BD的中點. 查看更多

 

題目列表(包括答案和解析)

精英家教網如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,以BD的中點O為球心、BD為直徑的球面交PD于點M,
(1)求證:平面ABM⊥平面PCD;
(2)求直線PC與平面ABM所成的角;
(3)求點O到平面ABM的距離.

查看答案和解析>>

精英家教網如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側棱PD⊥底面ABCD,PD=DC,E是PC的中點,作EF⊥PB交PB于點F.
(1)證明PA∥平面EDB;
(2)證明PB⊥平面EFD;
(3)求二面角C-PB-D的大小.

查看答案和解析>>

精英家教網如圖,在四棱錐P-ABCD中,底面ABCD是矩形,側棱PD⊥底面ABCD,PD=DC,E是PC的中點,作EF⊥PB交PB于點F.
(1)證明:PA∥平面EDB;
(2)證明:PB⊥平面EFD.
(3)若AB=4,BC=3,求點C到平面PBD的距離.

查看答案和解析>>

精英家教網如圖,在四棱錐P-ABCD中,底面ABCD是矩形,M、N分別為PA、BC的中點,PD⊥平面ABCD,且PD=AD=
2
,CD=1.
(1)證明:MN∥平面PCD;
(2)證明:MC⊥BD;
(3)求二面角A-PB-D的余弦值.

查看答案和解析>>

精英家教網如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(Ⅰ)證明AD⊥平面PAB;
(Ⅱ)求異面直線PC與AD所成的角的大小;
(Ⅲ)求二面角P-BD-A的大小.

查看答案和解析>>

 

一、1―5 DDDBB                6―10  CABCA   11―12 CD

二、13.

       14.甲                     15.12,3                16.

三、17.解:

   (1)∵

       =

       =

       =

       =

       ∴周期

   (2)∵

       因為在區間上單調遞增,

       在區間上單調遞減,

       所以,當時,取最大值1

       又

       ∴當時,取最小值

       所以函數在區間上的值域為

18.證明:

   (Ⅰ)連接AC,則F是AC的中點,在△CPA中,EF∥PA…………………………3分

       且PC平面PAD,EFPAD,

       ∴EF∥平面PAD…………………………………………………………………………6分

   (Ⅱ)因為平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,又CD⊥AD,

       ∴CD⊥平面PAD,∴CD⊥PA…………………………………………………………8分

       又PA=PD=AD,∴△PAD是等腰直角三角形,且∠APD=

       即PA⊥PD………………………………………………………………………………10分

       而CD∩PD=D,∴PA⊥平面PDC,又EF∥PA,∴EF⊥平面PDC………………12分

19.(I)由      ①

            ②

       ①-②得:

       即

      

      

      

   (II)

      

      

      

      

       故

20.解:(1)

   (2)

      

       由及bc=20與a=3

       解得b=4,c=5或b=5,c=4

   (3)設D到三邊的距離分別為x、y、z

       則

      

       又x、y滿足

       畫出不等式表示的平面區域得:

21.解:(1)

       由于函數時取得極值,

       所以

       即

   (2)方法一

       由 題設知:

       對任意都成立

       即對任意都成立

       設

       則對任意為單調遞增函數

       所以對任意恒成立的充分必要條件是

       即

       于是x的取值范圍是

       方法二

       由題設知:

       對任意都成立

       即

       對任意都成立

       于是對任意都成立,

       即

      

       于是x的取值范圍是

22.解:(I)由題意設橢圓的標準方程為

       由已知得:

      

       橢圓的標準方程為

   (II)設

       聯立

       得

      

       又

       因為以AB為直徑的圓過橢圓的右焦點D(2,0)

       ∴

       ∴+ -2

       ∴

       ∴

       解得:

       且均滿足

       當,直線過定點(2,0)與已知矛盾;

       當時,l的方程為,直線過定點(,0)

       所以,直線l過定點,定點坐標為(,0)

 

 

 


同步練習冊答案
主站蜘蛛池模板: 国内精品久久精品 | 日韩一二区 | 九一亚洲精品 | 黄色片在线免费观看 | 国产精品嫩草55av | 伊人久久一区二区三区 | 成人a视频在线观看 | 亚洲六月丁香色婷婷综合久久 | 久久午夜影院 | 蜜桃日韩| 天天久久婷婷 | 欧美日韩国产精品 | 色综合一区 | 日韩欧美一区二区三区久久婷婷 | 毛片网站免费观看 | av大片在线 | 日韩午夜精品视频 | 欧美一级黄色网 | 欧美激情精品 | 欧美一区二区三区在线看 | av青青 | 欧美日韩高清丝袜 | 狠狠草视频 | 在线中文字幕视频 | 国产在线观看一区二区三区 | 日韩中文在线播放 | 久久久久久久久国产成人免费 | 久在线视频 | 亚洲精品成人在线 | 久久大陆| 欧美日韩视频在线 | 欧美日韩专区 | 精品毛片 | 青青草免费在线观看 | 伊人色综合网 | 永久看片 | 成人精品 | 日韩精品免费一区二区在线观看 | japan高清日本乱xxxxx | 国产精品视频一区二区三区, | 日本精品一区二区在线观看 |