日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

6.如圖.在正方體ABCD-A1B1C1D1中.直線AB1與面ABC1D1所成的角等于 查看更多

 

題目列表(包括答案和解析)

 

一、選擇題:本大題共12個小題,每小題5分,共60分.

1-5:CDACB; 6-10:ABCDB; 11-12:CD.

二、填空題:本大題共4個小題,每小題4分,共16分.

13.1;  14.2;  15.; 16.①③④.

三、解答題:本大題共6個小題,共74分.解答要寫出文字說明,證明過程或演算步驟.

17.解:(Ⅰ)由,???????????????????????????????????? 3分

,∴.????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ),則.?????????????????????????????????????? 8分

.?????????????????????????????????????????????????????? 10分

,∴,∴.??????????????????????????????????????????? 12分

18.解:(Ⅰ)設“學生甲投籃5次入圍”為事件A,

.????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)方法一:設“學生甲投籃次數(shù)為3次”為事件B;“學生甲投籃次數(shù)為4次”為事件C,且B、C互斥.則;??????????????????????????????????????????????????????????????????????????????????????????????? 8分

.?????????????????????????????????????????????????? 10分

則學生甲投籃次數(shù)不超過4次的概率為.?????????????????????????? 12分

方法二:“學生甲投籃次數(shù)為5次”為事件D.則

(或者)???????????????????????????????? 10分

則學生甲投籃次數(shù)不超過4次的概率為.????????????????? 12分

19.解:方法一 (Ⅰ)∵DE⊥平面ACD,AF平面ACD,

∴DE⊥AF.又∵AC=AD,F(xiàn)為CD中點,∴AF⊥CD,因CD∩DE=D,

∴AF⊥平面CDE.???????????????????????????????????????????????????????????????????????????????????????????????? 4分

(Ⅱ)延長DA,EB交于點H,連結CH,因為AB∥DE,AB=DE,所以A為HD的中點.因為F為CD中點,所以CH∥AF,因為AF⊥平面CDE,所以CH⊥平面CDE,故∠DCE為面ACD和面BCE所成二面角的平面角,而△CDE是等腰直角三角形,則∠DCE=45°,則所求成銳二面角大小為45°. 8分

(Ⅲ),因DEAB,故點E到平面ABC的距離h等于點D到平面ABC的距離,也即△ABC中AC邊上的高.??????????????????????????????????????????????????? 10分∴三棱錐體積.    12分

方法二 (Ⅱ)取CE的中點Q,連接FQ,因為F為CD的中點,則FQ∥DE,故DE⊥平面ACD,∴FQ⊥平面ACD,又由(Ⅰ)可知FD,F(xiàn)Q,F(xiàn)A兩兩垂直,以O為坐標原點,建立如圖坐標系,則F(0,0,0),C(,0,0),A(0,0,),B(0,1,),E(1,2,0).平面ACD的一個法向量為,      5分

設面BCE的法向量

.???????????????????????????? 7分

∴面ACD和面BCE所成銳二面角的大小為45°.?????????? 8分

(Ⅲ)由(Ⅱ)知面BCE的一個法向量為.點A到BCE的距離.?????????????????????????????????????????????????????????????????????????????????????? 10分

,△BCE的面積.?? 11分

三棱錐A-BCE的體積.??????????????????????????????????????????????????????? 12分

20.解:(Ⅰ)當時,,∴;???????????????????????????????????????????????????? 1分

時,.????????????????????????????????????????????????????????????????????????? 2分

,即,∴.????????????? 4分

.??????????????????????????? 6分

(Ⅱ)由,則.???????????????????????????????????????????? 8分

∵不等式對任意都成立,

,∴,即.??????????????????????? 10分

解得,∴實數(shù)a的取值范圍是.????????????????????? 12分

21.解:(Ⅰ),因為在點處的切線與直線垂直,

,所以.???????????????????????????????????????????????????????????????????????? 2分

;由,得

所以函數(shù)的單調(diào)遞增區(qū)間是;單調(diào)遞減區(qū)間是.?????? 5分

(Ⅱ)

;由,得.????? 6分

∴函數(shù)上遞增,在上遞減,在上遞增. 函數(shù)處取得極小值.由,即,解得.??????????????????????????????????????????????????????????????????????????????? 8分

①若,即時,的最大值為;????????????????????? 10分

②若,即時,的最大值為.????????????????????????????????????????? 11分

綜上所述,函數(shù)的最大值??????????????????????????????????? 12分

22.解:(Ⅰ)由已知 ,∴點G的軌跡是以M,N為焦點的雙曲線的右支.     2分

設軌跡方程為,則,∴.???????????????????????????????? 3分

故軌跡E的方程為.??????????????????????????????????????????????????????????????????? 4分

(Ⅱ)①若存在.據(jù)題意,直線l的斜率存在且不等于0,設為k(k≠0),則l的方程為,與雙曲線方程聯(lián)立消y得,設

解得.????????????????????????????????????????????????????????????????????? 6分

知,△HPQ是等腰三角形,設PQ的中點為,則,即.      7分

,即

,解得,因,故

故存在直線l,使成立,此時l的方程為.????????????????????????? 9分

②∵,∴直線是雙曲線的右準線,由雙曲線定義得:,∴.???????????????????????????????????????????????????????????????? 10分

方法一:當直線l的斜率存在時,∴

.∵,∴,∴.???????????????????????? 13分

當直線l的斜率不存在時,,綜上.??????????????????????? 14分

方法二:設直線的傾斜角為,由于直線與雙曲線右支有兩個交點,

,過Q作,垂足為C,則

,由,得

.?????????????????????????????????????????????????????????????????????????????????????????????????????? 14分

 

 

 


同步練習冊答案
主站蜘蛛池模板: 久久久久久久国产精品 | 国产一二三区在线观看 | 在线欧美一区 | 国产精品日韩欧美一区二区三区 | 久久久久久久91 | 欧美2区| 91在线视频播放 | 一级片观看 | 秋霞国产| 亚洲精品久久久久avwww潮水 | 超碰在线99 | 91一区二区 | 激情超碰 | 一区二区日韩视频 | 亚洲一二三 | 国产日韩欧美一区二区 | 亚洲三级在线免费观看 | 国产 日韩 一区 | 一级一级特黄女人精品毛片 | 久久香蕉网 | 日本不卡视频 | 亚洲欧美另类国产 | 最新国产在线视频 | 日本不卡一二三 | 欧美精品久 | 日韩a∨| 国产精品久久久久久久久久妞妞 | 亚洲一区二区三区免费在线观看 | 久久亚洲精品国产一区 | 国产一区二区在线免费观看 | 中文字幕久久精品 | 98久久久| 日韩在线免费 | 在线一区二区视频 | 在线视频 亚洲 | 国产午夜精品一区二区三区视频 | 国产精品久久久久久久久 | 国产一区精品视频 | 天天综合视频 | 亚洲精品乱码视频 | 久久久国产精品免费 |