日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

學科網 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)學科網已知直四棱柱ABCDA1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1F為棱BB1學科網              的中點,M為線段AC1的中點.學科網

   (1)求證:直線MF∥平面ABCD學科網

   (2)求證:平面AFC1⊥平面ACC1A1學科網

   (3)求平面AFC1與與平面ABCD所成二面角的大小.學科網

學科網

查看答案和解析>>

(本小題滿分12分)學科網已知的三邊長成等差數(shù)列,若點的坐標分別為.(1)求頂點的軌跡的方程;學科網(2)若線段的延長線交軌跡于點,當時求線段的垂直平分線軸交點的橫坐標的取值范圍.學科網

學科網

查看答案和解析>>

(本小題滿分12分)學科網已知向量,定義函數(shù)學科網,求函數(shù)的最小正周期、單調遞增區(qū)間.學科網

查看答案和解析>>

(本小題滿分12分)學科網已知函數(shù)的最小值恰好是方程的三個根,其中(1)求證:學科網(2)設是函數(shù)的兩個極值點.若學科網求函數(shù)的解析式.學科網

學科網

查看答案和解析>>

(本小題滿分12分)
已知函數(shù),其中,為實常數(shù)且
(Ⅰ)求的單調增區(qū)間;www.www.zxxk.com[來源:學,科,網]
(Ⅱ)若對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

一. 選擇題 : (本大題共10小題, 每小題5分, 共50分)

ABDCC   DDBCB

二.填空題: (本大題共5小題, 每小題5分, 共25分)

11.1680     12.5     13.-1     14.     15.

三. 解答題: (本大題共6小題,  共75分)

16.(本小題滿分12分)

解:(1)f(x)......3分

……4分

 

的單調區(qū)間為,k∈Z   ...............6分

(2)由......7分

的內角 .....9分

      .......11分

  ......12分

 

17.(本小題滿分12分)

解:(1).......5分

.......12分

 

18.(本題滿分12分)

解法一:

(1)在棱取三等分點,使,則,由⊥平面,

⊥平面。過點,連結

學科網(Zxxk.Com)為所求二面角的平面角.

中,

學科網(Zxxk.Com)所以,二面角的余弦值為......6分

(2)因為,所以點到平面的距離等于

到平面的距離,⊥平面

過點,連結,則

⊥平面,過點

為所求距離,

學科網(Zxxk.Com)

所以,求點到平面的距離為......12分

解法二:

證明:(1)建立如圖所示的直角坐標系,

則A(0,0,0)、D(0,3,0)、P(0,0,3)、

B(4,0,0)、C(4,3,0), 由已知得

.

設平面QAC的法向量為,則

,令,得到平面QAC的一個法向量為

∵PA⊥平面ABCD,∴為平面ABCD的法向量.             

設二面角P―CD―B的大小為q,依題意可得.....6分

(2)由(1)得

設平面PBD的法向量為,則

,∴令,得到平面QAC的一個為法向量為

 ∵,∴C到面PBD的距離為 .....12分

 

19. (本小題滿分13分)

(1)解:當時,,………………………………①

則當, 時,………………②

①-②,得,即

,∴,當時,,則.

是以為首項,為公比的等比數(shù)列,∴,

………………………6分

(2)證明:.

, 則,…………③

…………………………④

③-④,得

.

時,, ∴為遞增數(shù)列,

 ∴........13分

學科網(Zxxk.Com)20.(本小題滿分13分)

解法一:

(1)設橢圓方程為(a>b>0),由已知c=1,

2a= .

所以a=,b2=a2-c2=1,

橢圓C的方程是x2+ =1. .......4分

(2)若直線l與x軸重合,則以AB為直徑的圓是x2+y2=1,

若直線l垂直于x軸,則以AB為直徑的圓是(x+)2+y2=

解得即兩圓相切于點(1,0).

因此所求的點T如果存在,只能是(1,0). 事實上,點T(1,0)就是所求的點........6分

證明如下:

當直線l垂直于x軸時,以AB為直徑的圓過點T(1,0).

若直線l不垂直于x軸,可設直線l:y=k(x+).

即(k2+2)x2+k2x+k2-2=0.記點A(x1,y1),B(x2,y2),則

=(x1-1, y1), =(x2-1, y2), =(x1-1)(x2-1)+y1y2=(x1-1)(x2-1)+k2(x1+)(x2+)

=(k2+1)x1x2+(k2-1)(x1+x2)+k2+1=(k2+1) +(k2-1) + +1=0,

所以TA⊥TB,即以AB為直徑的圓恒過點T(1,0).故在坐標平面上存在一個定點T(1,0)滿足條件.......13分

解法二:

(1)由已知c=1,設橢圓C的方程是(a>1).

因為點P在橢圓C上,所以,解得a2=2,所以橢圓C的方程是:.

.......4分

(2)假設存在定點T(u,v)滿足條件.同解法一得(k2+2)x2+k2x+k2-2=0.

記點A(x1,y1),B(x2,y2),則

又因為=(x1-u, y1-v), =(x2-u, y2-v),及y1=k(x1+),y2=k(x2+).

所以=(x1-u)(x2-u)+(y1-v)(y2-v)

=(k2+1)x1x2+(k2-u-kv)(x1+x2)+k2-v+u2+v2

=

當且僅當?=0恒成立時,以AB為直徑的圓恒過點T.

?=0恒成立等價于解得u=1,v=0.

此時,以AB為直徑的圓恒過定點T(1,0). 當直線l垂直于x軸時,以AB為直徑的圓亦過點T(1,0).所以在坐標平面上存在一個定點T(1,O)滿足條件

........13分

解法三:

(1)同解法一或解法二........4分

(2)設坐標平面上存在一個定點T滿足條件,根據(jù)直線過x軸上的定點S及橢圓的對稱性,所求的點T如果存在,只能在x軸上,設T(t,O).

 同解法一得=(x1-t,y1),=(x2-t,y2)

=(x1-t)(x2-t)+y1y2=(x1-t)(x2-t)+k2(x1+)(x2+)

=(k2+1)x1x2+(k2-t)(x1+x2)+k2+t2=

當且僅當?=O恒成立時,以AB為直徑的圓恒過點T.

?=O恒成立等價于解得t=1.所以當t=1時,以AB為直徑的圓恒過點T.

當直線l垂直于x軸時,以AB為直徑的圓亦過點T(1,O).

   所以在坐標平面上存在一個定點T(1,O)滿足條件........13分

 

21. (本小題滿分13分)

解:(1)由題意               …………………………1分

時,取得極值,  所以

      即      …………………3分

    此時當時,,當時,

    是函數(shù)的最小值。          ………………………5分

(2)設,則  ……8分

     設

      ,令解得

       列表如下:

 

__

0

+

 

學科網(Zxxk.Com)學科網(Zxxk.Com)

學科網(Zxxk.Com)

 

 

 

 

 

 

 

函數(shù)上是增函數(shù),在上是減函數(shù)。

時,有極大值;當時,有極小值……10分

函數(shù)的圖象有兩個公共點,函數(shù)的圖象有兩個公共點

         或       ……13分


同步練習冊答案
主站蜘蛛池模板: 欧美日韩成人 | 欧美同性大尺度腐剧 | 一区二区在线看 | 亚洲www| 青草av在线 | 欧美日韩在线观看中文字幕 | 久久毛片 | 精品亚洲视频在线 | 国产精品成av人在线视午夜片 | 国产精品无码久久久久 | 99热国产在线观看 | 欧美成年网站 | 中文字幕一区在线 | 小罗莉极品一线天在线 | av片免费看 | 亚洲高清在线视频 | 成人a网| 亚洲另类视频 | 美女吊逼| 欧美日韩色综合 | 日韩毛片在线免费观看 | 91在线视频免费观看 | 国产成人精品一区二区视频免费 | 精品视频在线免费 | 日本久久www成人免 亚洲成人av | 91精品久久久久久久久久入口 | 国产日韩欧美精品一区 | 国产视频久久 | 99国产精品| 丝袜+亚洲+另类+欧美+变态 | 精品三区在线观看 | 免费一区二区三区视频在线 | 欧美一级二级视频 | 欧美在线激情 | 懂色av一区二区三区免费观看 | 日日精品 | 国内精品久久久久久久久 | 福利网址| 国产一区二区黑人欧美xxxx | 九九热在线免费视频 | 中文字幕 国产精品 |