日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

. 查看更多

 

題目列表(包括答案和解析)

10、,設{an}是正項數列,其前n項和Sn滿足:4Sn=(an-1)(an+3),則數列{an}的通項公式an=
2n+1

查看答案和解析>>

精英家教網,如圖給出的是計算
1
2
+
1
4
+
1
6
+…+
1
20
的值的一個程序框圖,其中判斷框內填入的條件是
 

查看答案和解析>>

5、α,β為兩個互相垂直的平面,a、b為一對異面直線,下列條件:
①a∥α、b?β;②a⊥α.b∥β;
③a⊥α.b⊥β;④a∥α、b∥β且a與α的距離等于b與β的距離,其中是a⊥b的充分條件的有(  )

查看答案和解析>>

,設f(x)是定義在R上的以3為周期的奇函數,且f(2)=0,則.
(i)f(
32
)=
 

(ii)設S為f(x)=0在區間[0,20]內的所有根之和,則S的最小值為
 

查看答案和解析>>

,已知y=f(x)是定義在R上的單調遞減函數,對任意的實數x,y都有f(x+y)=f(x)f(y)且f(0)=1,數列{an}滿足a1=4,f(log3-
an+1
4
)f(-1-log3
an
4
)=1
(n∈N*).
(1)求數列{an}的通項公式;
(2)設Sn是數列{an}的前n項和,試比較Sn與6n2-2的大小.

查看答案和解析>>

    例10  為促進個人住房商品化的進程,我國1999年元月公布了個人住房公積金貸款利率和商業性貸款利率如下:

 

貸款期(年數)

公積金貸款月利率(‰)

商業性貸款月利率(‰)

……

11

12

13

14

15

……

……

4.365

4.455

4.545

4.635

4.725

……

……

5.025

5.025

5.025

5.025

5.025

……


    汪先生家要購買一套商品房,計劃貸款25萬元,其中公積金貸款10萬元,分十二年還清;商業貸款15萬元,分十五年還清.每種貸款分別按月等額還款,問:
    (1)汪先生家每月應還款多少元?
    (2)在第十二年底汪先生家還清了公積金貸款,如果他想把余下的商業貸款也一次性還清;那么他家在這個月的還款總數是多少?
    (參考數據:1.004455144=1.8966,1.005025144=2.0581,1.005025180=2.4651)


   講解  設月利率為r,每月還款數為a元,總貸款數為A元,還款期限為n月
  第1月末欠款數 A(1+r)-a
  第2月末欠款數 [A(1+r)-a](1+r)-a= A(1+r)2-a (1+r)-a
    第3月末欠款數 [A(1+r)2-a (1+r)-a](1+r)-a
           =A(1+r)3-a (1+r)2-a(1+r)-a
  ……
  第n月末欠款數 
    得:                                  

  對于12年期的10萬元貸款,n=144,r=4.455‰
  ∴
  對于15年期的15萬元貸款,n=180,r=5.025‰
  ∴
  由此可知,先生家前12年每月還款942.37+1268.22=2210.59元,后3年每月還款1268.22元.
  (2)至12年末,先生家按計劃還款以后還欠商業貸款
   
  其中A=150000,a=1268.22,r=5.025‰  ∴X=41669.53
    再加上當月的計劃還款數2210.59元,當月共還款43880.12元.   

    需要提及的是,本題的計算如果不許用計算器,就要用到二項展開式進行估算,這在2002年全國高考第(12)題中得到考查.

    例11  醫學上為研究傳染病傳播中病毒細胞的發展規律及其預防,將病毒細胞注入一只小白鼠體內進行實驗,經檢測,病毒細胞的增長數與天數的關系記錄如下表. 已知該種病毒細胞在小白鼠體內的個數超過108的時候小白鼠將死亡.但注射某種藥物,將可殺死其體內該病毒細胞的98%.

(1)為了使小白鼠在實驗過程中不死亡,第一次最遲應在何時注射該種藥物?(精確到天)

(2)第二次最遲應在何時注射該種藥物,才能維持小白鼠的生命?(精確到天)

    天數t

    病毒細胞總數N

    1

    2

    3

    4

    5

    6

    7

    1

    2

    4

    8

    16

    32

    64

     

     

     

     

     

     

     

     

    講解 (1)由題意病毒細胞關于時間n的函數為, 則由

    兩邊取對數得    n27.5,

       即第一次最遲應在第27天注射該種藥物.

    (2)由題意注入藥物后小白鼠體內剩余的病毒細胞為,

    再經過x天后小白鼠體內病毒細胞為,

    由題意≤108,兩邊取對數得

         故再經過6天必須注射藥物,即第二次應在第33天注射藥物.

        本題反映的解題技巧是“兩邊取對數”,這對實施指數運算是很有效的.

         例12 有一個受到污染的湖泊,其湖水的容積為V立方米,每天流出湖泊的水量都是r立方米,現假設下雨和蒸發正好平衡,且污染物質與湖水能很好地混合,用g(t)表示某一時刻t每立方米湖水所含污染物質的克數,我們稱為在時刻t時的湖水污染質量分數,已知目前污染源以每天p克的污染物質污染湖水,湖水污染質量分數滿足關系式g(t)= +[g(0)- ]?e(p≥0),其中,g(0)是湖水污染的初始質量分數.

    (1)當湖水污染質量分數為常數時,求湖水污染的初始質量分數; 

    (2)求證:當g(0)< 時,湖泊的污染程度將越來越嚴重; 

    (3)如果政府加大治污力度,使得湖泊的所有污染停止,那么需要經過多少天才能使湖水的污染水平下降到開始時污染水平的5%?

     講解(1)∵g(t)為常數,  有g(0)-=0, ∴g(0)=   .                      

    (2) 我們易證得0<t1<t2, 則

    g(t1)-g(t2)=[g(0)- ]e-[g(0)- ]e=[g(0)- ][e-e]=[g(0)- ,

    ∵g(0)?<0,t1<t2,e>e,

    ∴g(t1)<g(t2)    .                                                      

    故湖水污染質量分數隨時間變化而增加,污染越來越嚴重.                

    (3)污染停止即P=0,g(t)=g(0)?e,設經過t天能使湖水污染下降到初始污染水平5%即g(t)=5% g(0)?

    =e,∴t= ln20,

    故需要 ln20天才能使湖水的污染水平下降到開始時污染水平的5%.

    高考應用性問題的熱門話題是增減比率型和方案優化型, 另外,估測計算型和信息遷移型也時有出現.當然,數學高考應用性問題關注當前國內外的政治,經濟,文化, 緊扣時代的主旋律,凸顯了學科綜合的特色,是歷年高考命題的一道亮麗的風景線.

     

    主站蜘蛛池模板: 日韩精品免费在线 | 亚洲一区二区三区免费在线观看 | 天堂新版8中文在线8 | 国产精品综合 | 在线 丝袜 欧美 日韩 制服 | 最近韩国日本免费高清观看 | 性一交一乱一透一a级 | 久久亚洲免费 | 日韩电影免费在线观看中文字幕 | 国产在线中文字幕 | 日韩精品一区二区三区在线观看 | 欧美精品一区二区三区一线天视频 | 老司机午夜免费精品视频 | 国产成人精品一区二区三区网站观看 | 国产精品毛片无码 | 亚洲午夜精品一区二区三区他趣 | 国产成人精品一区二区三区四区 | 美女爽到呻吟久久久久 | 久热av中文字幕 | 欧美一级二级片 | 亚洲视频手机在线 | 国产精品一区二区在线观看网站 | 羞羞视频在线观看视频 | 国产v日产∨综合v精品视频 | 日本高清视频在线 | 日韩一二三区在线观看 | 在线观看av片 | 日韩免费高清视频 | 欧美高清hd | 欧美日韩一级视频 | 中文字幕三级在线看午夜 | 激情婷婷综合 | 在线观看黄色av网站 | 综合久久网 | 91在线免费视频 | 成人国产精品一区 | 亚洲欧洲视频 | 亚洲高清久久 | 日本精品久久 | 日本视频一区二区三区 | 在线观看日韩 |