日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

[解](Ⅰ)證明:平面平面,, 查看更多

 

題目列表(包括答案和解析)

在復平面內, 是原點,向量對應的復數是=2+i。

(Ⅰ)如果點A關于實軸的對稱點為點B,求向量對應的復數

(Ⅱ)復數對應的點C,D。試判斷A、B、C、D四點是否在同一個圓上?并證明你的結論。

【解析】第一問中利用復數的概念可知得到由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i  ∵ (2+i)(-2i)=2-4i,      ∴  =

第二問中,由題意得,=(2,1)  ∴

同理,所以A、B、C、D四點到原點O的距離相等,

∴A、B、C、D四點在以O為圓心,為半徑的圓上

(Ⅰ)由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i     3分

     ∵ (2+i)(-2i)=2-4i,      ∴  =                 2分

(Ⅱ)A、B、C、D四點在同一個圓上。                              2分

證明:由題意得,=(2,1)  ∴

  同理,所以A、B、C、D四點到原點O的距離相等,

∴A、B、C、D四點在以O為圓心,為半徑的圓上

 

查看答案和解析>>

如圖,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四邊形ABDE是直角梯形,BDAE,BDBA,AE=2BD=4,O、M分別為CE、AB的中點.

(Ⅰ)證明:OD//平面ABC;

(Ⅱ)能否在EM上找一點N,使得ON⊥平面ABDE?若能,請指出點N的位置,并加以證明;若不能,請說明理由.

【解析】第一問:取AC中點F,連結OF、FB.∵F是AC的中點,O為CE的中點,

∴OF∥EA且OF=且BD=

∴OF∥DB,OF=DB,

∴四邊形BDOF是平行四邊形。

∴OD∥FB

第二問中,當N是EM中點時,ON⊥平面ABDE。           ………7分

證明:取EM中點N,連結ON、CM, AC=BC,M為AB中點,∴CM⊥AB,

又∵面ABDE⊥面ABC,面ABDE面ABC=AB,CM面ABC,

∴CM⊥面ABDE,∵N是EM中點,O為CE中點,∴ON∥CM,

∴ON⊥平面ABDE。

 

查看答案和解析>>

如圖,已知直線)與拋物線和圓都相切,的焦點.

(Ⅰ)求的值;

(Ⅱ)設上的一動點,以為切點作拋物線的切線,直線軸于點,以為鄰邊作平行四邊形,證明:點在一條定直線上;

(Ⅲ)在(Ⅱ)的條件下,記點所在的定直線為,    直線軸交點為,連接交拋物線兩點,求△的面積的取值范圍.

【解析】第一問中利用圓的圓心為,半徑.由題設圓心到直線的距離.  

,解得舍去)

與拋物線的相切點為,又,得.     

代入直線方程得:,∴    所以

第二問中,由(Ⅰ)知拋物線方程為,焦點.   ………………(2分)

,由(Ⅰ)知以為切點的切線的方程為.   

,得切線軸的點坐標為    所以,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形

因為是定點,所以點在定直線

第三問中,設直線,代入結合韋達定理得到。

解:(Ⅰ)由已知,圓的圓心為,半徑.由題設圓心到直線的距離.  

,解得舍去).     …………………(2分)

與拋物線的相切點為,又,得.     

代入直線方程得:,∴    所以.      ……(2分)

(Ⅱ)由(Ⅰ)知拋物線方程為,焦點.   ………………(2分)

,由(Ⅰ)知以為切點的切線的方程為.   

,得切線軸的點坐標為    所以,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,

因為是定點,所以點在定直線上.…(2分)

(Ⅲ)設直線,代入,  ……)得,                 ……………………………     (2分)

的面積范圍是

 

查看答案和解析>>

如圖所示,四面體被一平面所截,截面是一個平行四邊形.求證:

【答案】(理)證明:EH∥FG,EH

EH∥面,又CDEH∥CD, 又EH面EFGH,CD面EFGH

EH∥BD  

【解析】本試題主要是考查了空間四面體中線面位置關系的判定。

要證明線面平行可知通過線線平行,結合判定定理得到結論。

 

查看答案和解析>>

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

 

【解析】解法一:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得于是,所以

(2) ,設平面PCD的法向量

,即.不防設,可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設點E的坐標為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>


同步練習冊答案
主站蜘蛛池模板: 色综合久久久久综合99 | 91久久国产综合久久蜜月精品 | 国产精品久久久久久久久久久新郎 | 欧美精品区| 夜夜撸av | 亚洲视频免费在线观看 | 久久久久久一区 | 中文字幕网在线 | 国产精品婷婷午夜在线观看 | 国产一区二区三区高清 | 99亚洲| 日韩中文字幕三区 | 亚洲欧美另类久久久精品2019 | 国产精品久久久久久久久久三级 | 午夜剧场欧美 | 美国一级黄色片 | 久久九精品 | 久久精品久久久久久久久久久久久 | 久久成人免费视频 | 日韩久久久久久久久久 | 成人毛片在线观看 | avmans最新导航地址 | 久久免费视频国产 | 欧美精品a∨在线观看不卡 国产精品一区二区三区在线 | 在线免费黄色小视频 | 成人做爰www免费看视频网站 | 日韩资源在线 | 尤物99av写真在线 | 精品日韩一区二区三区 | 日韩成人一区 | 亚洲婷婷综合网 | 中文字幕第100页 | 精品久久久久久久久久久久久久 | 久久精品国产亚洲blacked | 日韩精品一二 | 午夜免费网 | 久久国产精品99久久久久久牛牛 | 免费黄色片视频网站 | 最新久久精品 | 国产精品免费一区二区三区四区 | 日韩免费视频 |