題目列表(包括答案和解析)
(本題滿分12分)
已知冪函數圖象經過點,求出函數解析式,并指出函數的單調性與奇偶性。
已知函數,
,k為非零實數.
(Ⅰ)設t=k2,若函數f(x),g(x)在區間(0,+∞)上單調性相同,求k的取值范圍;
(Ⅱ)是否存在正實數k,都能找到t∈[1,2],使得關于x的方程f(x)=g(x)在[1,5]上有且僅有一個實數根,且在[-5,-1]上至多有一個實數根.若存在,請求出所有k的值的集合;若不存在,請說明理由.
【解析】本試題考查了運用導數來研究函數的單調性,并求解參數的取值范圍。與此同時還能對于方程解的問題,轉化為圖像與圖像的交點問題來長處理的數學思想的運用。
(本小題滿分12分)
已知函數;
(1)求; (2)求
的最大值與最小值.
【解析】第一問利用導數的運算法則,冪函數的導數公式,可得。
第二問中,利用第一問的導數,令導數為零,得到
然后結合導數,函數的關系判定函數的單調性,求解最值即可。
已知函數其中a>0.
(I)求函數f(x)的單調區間;
(II)若函數f(x)在區間(-2,0)內恰有兩個零點,求a的取值范圍;
(III)當a=1時,設函數f(x)在區間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數g(t)在區間[-3,-1]上的最小值。
【考點定位】本小題主要考查導數的運算,利用導數研究函數的單調性、函數的零點,函數的最值等基礎知識.考查函數思想、分類討論思想.考查綜合分析和解決問題的能力.
已知函數
(1)當時,討論函數
的單調性:
(2)若函數的圖像上存在不同兩點
,設線段
的中點為
,使得
在點
處的切線
與直線
平行或重合,則說函數
是“中值平衡函數”,切線
叫做函數
的“中值平衡切線”。試判斷函數
是否是“中值平衡函數”?若是,判斷函數
的“中值平衡切線”的條數;若不是,說明理由.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com